Electrical Atomic Force Microscopy for Nanoelectronics

The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabricatio...

Full description

Bibliographic Details
Other Authors: Celano, Umberto (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2019, 2019
Edition:1st ed. 2019
Series:NanoScience and Technology
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03869nmm a2200385 u 4500
001 EB001872995
003 EBX01000000000000001036366
005 00000000000000.0
007 cr|||||||||||||||||||||
008 190924 ||| eng
020 |a 9783030156121 
100 1 |a Celano, Umberto  |e [editor] 
245 0 0 |a Electrical Atomic Force Microscopy for Nanoelectronics  |h Elektronische Ressource  |c edited by Umberto Celano 
250 |a 1st ed. 2019 
260 |a Cham  |b Springer International Publishing  |c 2019, 2019 
300 |a XX, 408 p. 256 illus., 230 illus. in color  |b online resource 
505 0 |a Introduction (U. Celano, W. Vandervorst) -- Conductive AFM for nanoscale analysis of high-k dielectric metal oxides (C. Rodenbücher, M. Wojtyniak, K. Szot) -- Mapping Conductance and Carrier Distribution in Confined Three-Dimensional Transistor Structures (A. Schulze, P. Eyben, K. Paredis, L. Wouters, U. Celano, W. Vandervorst) -- Scanning Capacitance Microscopy for two-dimensional carrier profiling of semiconductor devices (J. Mody, J. Nxumalo) -- Scanning probe lithography for nanopatterning and fabrication of high-resolution devices (Y. K. Ryu, A. W. Knoll) -- Characterizing Ferroelectricity with an Atomic Force Microscopy: an all-around technique (S. Martin, B. Gautier, N. Baboux, A. Gruvermann, A. Carretero-Genevrier, M. Gich, A. Gomez) -- Electrical AFM for the analysis of Resistive Switching (S. Brivio, J. Frascaroli, M. H. Lee) -- Magnetic force microscopy for magnetic recording and devices (A. Hirohata, M. Samiepour, M. Corbetta) -- Nanoscale space charge density profiling with KPFM and photoconductive C-AFM/KPFM (C. Villeneuve-Faure, K. Makasheva, L. Boudou, G. Teyssedre) -- Electrical AFM of 2D materials and heterostructures for nanoelectronics (F. Giannazzo, G. Greco, F. Roccaforte, C. Mahata, M. Lanza) -- Diamond probes technology (T. Hantschel, T. Conard, J. Kilpatrick, G. Cross) -- Scanning Microwave Impedance Microscopy (sMIM) in electronic materials and quantum materials (K. Rubin, Y. Yang, O. Amster, D. Scrymgeour, S. Misra) 
653 |a Nanophysics 
653 |a Electronics and Microelectronics, Instrumentation 
653 |a Spectrum analysis 
653 |a Spectroscopy 
653 |a Optical Materials 
653 |a Nanoscience 
653 |a Electronics 
653 |a Optical materials 
653 |a Nanotechnology 
653 |a Materials / Analysis 
653 |a Characterization and Analytical Technique 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a NanoScience and Technology 
028 5 0 |a 10.1007/978-3-030-15612-1 
856 4 0 |u https://doi.org/10.1007/978-3-030-15612-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 543 
520 |a The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabrication. Through the years, this created a strong alliance between microscopy techniques and IC manufacturing. This book reviews the latest progress in IC devices, with emphasis on the impact of electrical atomic force microscopy (AFM) techniques for their development. The operation principles of many techniques are introduced, and the associated metrology challenges described. Blending the expertise of industrial specialists and academic researchers, the chapters are dedicated to various AFM methods and their impact on the development of emerging nanoelectronic devices. The goal is to introduce the major electrical AFM methods, following the journey that has seen our lives changedby the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible