Disease Resistance in Crop Plants Molecular, Genetic and Genomic Perspectives

A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic te...

Full description

Bibliographic Details
Other Authors: Wani, Shabir Hussain (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2019, 2019
Edition:1st ed. 2019
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 04718nmm a2200373 u 4500
001 EB001871317
003 EBX01000000000000001034688
005 00000000000000.0
007 cr|||||||||||||||||||||
008 190802 ||| eng
020 |a 9783030207281 
100 1 |a Wani, Shabir Hussain  |e [editor] 
245 0 0 |a Disease Resistance in Crop Plants  |h Elektronische Ressource  |b Molecular, Genetic and Genomic Perspectives  |c edited by Shabir Hussain Wani 
250 |a 1st ed. 2019 
260 |a Cham  |b Springer International Publishing  |c 2019, 2019 
300 |a XII, 307 p. 15 illus. in color  |b online resource 
505 0 |a Foreword -- Biotic and abiotic stresses, impact on plants and their response -- Cloning of genes underlying quantitative resistance for plant disease control -- CRISPR based tools for crop improvement: Understanding the plant pathogen interaction -- Disease resistance in wheat: present status and future prospects -- Rice, Marker-assisted breeding and Disease Resistance -- Genome Wide Association Study (GWAS) on Disease Resistance in Maize -- Molecular breeding approaches for disease resistance in sugarcane -- Molecular breeding for resistance to economically important diseases of Pulses -- Molecular Breeding for Resistance to Economically Important Diseases of Fodder Oat -- Charcoal rot resistance in soybean-current understanding and future perspectives -- Barley, Disease Resistance, and Molecular breeding approaches -- Index 
653 |a Plant biotechnology 
653 |a Plant diseases 
653 |a Plant Biotechnology 
653 |a Plant Pathology 
653 |a Plant Genetics 
653 |a Plant Physiology 
653 |a Plant physiology 
653 |a Agriculture 
653 |a Plant genetics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-3-030-20728-1 
856 4 0 |u https://doi.org/10.1007/978-3-030-20728-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 581.35 
520 |a A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools 
520 |a It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens.  
520 |a Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs).