Entire Slice Regular Functions

This Briefs volume develops the theory of entire slice regular functions. It is the first self-contained, monographic work on the subject, offering all the necessary background information and detailed studies on several central topics, including estimates on the minimum modulus of regular functions...

Full description

Main Authors: Colombo, Fabrizio, Sabadini, Irene (Author), Struppa, Daniele C. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2016, 2016
Edition:1st ed. 2016
Series:SpringerBriefs in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02066nmm a2200313 u 4500
001 EB001870689
003 EBX01000000000000001034060
005 00000000000000.0
007 cr|||||||||||||||||||||
008 190802 ||| eng
020 |a 9783319492650 
100 1 |a Colombo, Fabrizio 
245 0 0 |a Entire Slice Regular Functions  |h Elektronische Ressource  |c by Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa 
250 |a 1st ed. 2016 
260 |a Cham  |b Springer International Publishing  |c 2016, 2016 
300 |a V, 118 p  |b online resource 
505 0 |a 1. Introduction -- 2.Slice Regular Functions: Algebra -- 3.Slice Regular Functions: Analysis -- 4.Slice Regular Infinite Products -- 5.Growth of Entire Slice Regular Functions -- 6.References -- Index 
653 |a Functions of complex variables 
653 |a Functions of a Complex Variable 
700 1 |a Sabadini, Irene  |e [author] 
700 1 |a Struppa, Daniele C.  |e [author] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Mathematics 
856 |u https://doi.org/10.1007/978-3-319-49265-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.9 
520 |a This Briefs volume develops the theory of entire slice regular functions. It is the first self-contained, monographic work on the subject, offering all the necessary background information and detailed studies on several central topics, including estimates on the minimum modulus of regular functions, relations between Taylor coefficients and the growth of entire functions, density of their zeros, and the universality properties. The proofs presented here shed new light on the nature of the quaternionic setting and provide inspiration for further research directions. Also featuring an exhaustive reference list, the book offers a valuable resource for graduate students, postgraduate students and researchers in various areas of mathematical analysis, in particular hypercomplex analysis and approximation theory