Fungal Nanobionics: Principles and Applications

Fungal nanobionics has great prospects for developing new products with industrial, agriculture, medicine and consumer applications in a wide range of sectors. The fields of chemical engineering, agri-food, biochemical, pharmaceuticals, diagnostics and medical device development all employ fungal pr...

Full description

Bibliographic Details
Other Authors: Prasad, Ram (Editor), Kumar, Vivek (Editor), Kumar, Manoj (Editor), Wang, Shanquan (Editor)
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2018, 2018
Edition:1st ed. 2018
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03924nmm a2200385 u 4500
001 EB001843880
003 EBX01000000000000001007869
005 00000000000000.0
007 cr|||||||||||||||||||||
008 180802 ||| eng
020 |a 9789811086663 
100 1 |a Prasad, Ram  |e [editor] 
245 0 0 |a Fungal Nanobionics: Principles and Applications  |h Elektronische Ressource  |c edited by Ram Prasad, Vivek Kumar, Manoj Kumar, Shanquan Wang 
250 |a 1st ed. 2018 
260 |a Singapore  |b Springer Nature Singapore  |c 2018, 2018 
300 |a XVIII, 316 p. 50 illus., 38 illus. in color  |b online resource 
505 0 |a Nanobiocomposites: Synthesis and Environmental Applications -- Medical and Cosmetic Applications of Fungal Nanotechnology: Production, Characterization and Bioactivity -- Fungal Nanoparticles: A Novel Tool for a Green Biotechnology? -- Application of Nanotechnology in Mycoremediation: Current Status and Future Prospects -- Fungal Nanotechnology: A New Approach Toward Efficient Biotechnology Application -- Advances in Biomedical Application of Chitosan and its Functionalized Nano-derivatives -- Biosynthesis of Metal Nanoparticles via Fungal Dead Biomass in Industrial Bioremediation Process -- Nanofabrication of Myconanoparticles: A Future Prospect -- In vitro Secondary Metabolite Production Through Fungal Elicitation: An Approach for Sustainability -- Metal and Metal Oxide Mycogenic Nanoparticles and Their Application as Antimicrobial and Antibiofilm Agents -- Applications of Fungal Nanobiotechnology in Drug Development -- Mycosynthesized Nanoparticles: Role in Food Processing Industries 
653 |a Microbiology 
653 |a Mycology 
653 |a Fungi 
653 |a Bioremediation 
653 |a Sustainability 
653 |a Biotechnology 
653 |a Environmental Engineering/Biotechnology 
653 |a Nanotechnology 
653 |a Agriculture 
653 |a Environmental engineering 
700 1 |a Kumar, Vivek  |e [editor] 
700 1 |a Kumar, Manoj  |e [editor] 
700 1 |a Wang, Shanquan  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
856 4 0 |u https://doi.org/10.1007/978-981-10-8666-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 630 
520 |a Fungal nanobionics has great prospects for developing new products with industrial, agriculture, medicine and consumer applications in a wide range of sectors. The fields of chemical engineering, agri-food, biochemical, pharmaceuticals, diagnostics and medical device development all employ fungal products, with fungal nanomaterials currently used in a wide range of applications, ranging from drug development to food industry and agricultural sector. The fungal agents emerge as an environmentally friendly, clean, non‐toxic agent for the biogenic metal nanoparticles and employs both intracellular and extracellular methods. The simplicity of scaling up and downstream processing and the presence of fungal mycelia affording an increased surface area provide key advantages. In addition, the larger spectrum of synthesized nanoparticle morphologies and the substantially faster biosynthesis rate in cell-free filtrate (due to the higher amount of proteins secreted in fungi) make this a particularly enticing route. Understanding the diversity of fungi in assorted ecosystems, as well as their interactions with other microorganisms, animals and plants, is essential to underpin real and innovative technological developments and the applications of metal nanoparticles in many disciplines including agriculture, catalysis, and biomedical biosensors. Importantly, biogenic fungal nanoparticles show significant synergistic characteristics when combined with antibiotics and fungicides to offer substantially greater resistance to microbial growth and applications in nanomedicine ranging from topical ointments and bandages for wound healing to coated stents