Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles

This thesis combines quantum electrical engineering with electron spin resonance, with an emphasis on unraveling emerging collective spin phenomena. The presented experiments, with first demonstrations of the cavity protection effect, spectral hole burning and bistability in microwave photonics, cov...

Full description

Bibliographic Details
Main Author: Putz, Stefan
Format: eBook
Language:English
Published: Cham Springer International Publishing 2017, 2017
Edition:1st ed. 2017
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:This thesis combines quantum electrical engineering with electron spin resonance, with an emphasis on unraveling emerging collective spin phenomena. The presented experiments, with first demonstrations of the cavity protection effect, spectral hole burning and bistability in microwave photonics, cover new ground in the field of hybrid quantum systems. The thesis starts at a basic level, explaining the nature of collective effects in great detail. It develops the concept of Dicke states spin-by-spin, and introduces it to circuit quantum electrodynamics (QED), applying it to a strongly coupled hybrid quantum system studied in a broad regime of several different scenarios. It also provides experimental demonstrations including strong coupling, Rabi oscillations, nonlinear dynamics, the cavity protection effect, spectral hole burning, amplitude bistability and spin echo spectroscopy
Physical Description:XVIII, 124 p. 75 illus., 65 illus. in color online resource
ISBN:9783319664477