Strain Gradient Plasticity-Based Modeling of Damage and Fracture

This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and...

Full description

Bibliographic Details
Main Author: Martínez Pañeda, Emilio
Format: eBook
Language:English
Published: Cham Springer International Publishing 2018, 2018
Edition:1st ed. 2018
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03025nmm a2200337 u 4500
001 EB001579325
003 EBX01000000000000000945785
005 00000000000000.0
007 cr|||||||||||||||||||||
008 170904 ||| eng
020 |a 9783319633848 
100 1 |a Martínez Pañeda, Emilio 
245 0 0 |a Strain Gradient Plasticity-Based Modeling of Damage and Fracture  |h Elektronische Ressource  |c by Emilio Martínez Pañeda 
250 |a 1st ed. 2018 
260 |a Cham  |b Springer International Publishing  |c 2018, 2018 
300 |a XVII, 159 p. 66 illus., 47 illus. in color  |b online resource 
505 0 |a Part.-Introduction -- Numerical framework -- Gradient plasticity formulations -- Numerical implementation -- Part ii -- Results -- Mechanism based crack tip characterization -- On fracture infinite strain gradient plasticity -- The role of energetic and dissipative length parameters -- Hydrogen diffusion towards the fracture process zone -- SGP-Based modelling of heac -- Conclusions.-Bibliography 
653 |a Mechanics, Applied 
653 |a Metals and Alloys 
653 |a Solids 
653 |a Solid Mechanics 
653 |a Mathematical physics 
653 |a Metals 
653 |a Theoretical, Mathematical and Computational Physics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
028 5 0 |a 10.1007/978-3-319-63384-8 
856 4 0 |u https://doi.org/10.1007/978-3-319-63384-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.105 
520 |a This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials.