Causality, measurement theory and the differentiable structure of space-time

Introducing graduate students and researchers to mathematical physics, this book discusses two recent developments: the demonstration that causality can be defined on discrete space-times; and Sewell's measurement theory, in which the wave packet is reduced without recourse to the observer'...

Full description

Bibliographic Details
Main Author: Sen, Rathindra Nath
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2010
Series:Cambridge monographs on mathematical physics
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
Description
Summary:Introducing graduate students and researchers to mathematical physics, this book discusses two recent developments: the demonstration that causality can be defined on discrete space-times; and Sewell's measurement theory, in which the wave packet is reduced without recourse to the observer's conscious ego, nonlinearities or interaction with the rest of the universe. The definition of causality on a discrete space-time assumes that space-time is made up of geometrical points. Using Sewell's measurement theory, the author concludes that the notion of geometrical points is as meaningful in quantum mechanics as it is in classical mechanics, and that it is impossible to tell whether the differential calculus is a discovery or an invention. Providing a mathematical discourse on the relation between theoretical and experimental physics, the book gives detailed accounts of the mathematically difficult measurement theories of von Neumann and Sewell
Physical Description:xx, 391 pages digital
ISBN:9780511674761