1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods

This book presents wet chemical sol-gel and hydrothermal methods for 1D oxide nanostructure preparation. These methods represent an attractive route to multifunctional nanomaterials synthesis, as they are versatile, inexpensive and, thus, appropriate for obtaining a wide range of oxide materials wit...

Full description

Bibliographic Details
Main Authors: Anastasescu, Crina, Mihaiu, Susana (Author), Preda, Silviu (Author), Zaharescu, Maria (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2016, 2016
Edition:1st ed. 2016
Series:SpringerBriefs in Materials
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03671nmm a2200505 u 4500
001 EB001229888
003 EBX01000000000000000873191
005 00000000000000.0
007 cr|||||||||||||||||||||
008 161005 ||| eng
020 |a 9783319329888 
100 1 |a Anastasescu, Crina 
245 0 0 |a 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods  |h Elektronische Ressource  |c by Crina Anastasescu, Susana Mihaiu, Silviu Preda, Maria Zaharescu 
250 |a 1st ed. 2016 
260 |a Cham  |b Springer International Publishing  |c 2016, 2016 
300 |a VIII, 82 p. 29 illus., 7 illus. in color  |b online resource 
505 0 |a Introduction (general considerations on the 1 D oxide nanostructures) -- Synthesis of oxide nanotubes by sol-gel method -- Synthesis of oxide nanotubes/nanorods by hydrothermal method 
653 |a Nanochemistry 
653 |a Nanostructures 
653 |a Catalysis 
653 |a Nanochemistry 
653 |a Nanoscale science 
653 |a Catalysis 
653 |a Electronic materials 
653 |a Composite materials 
653 |a Glass 
653 |a Nanoscience 
653 |a Ceramics 
653 |a Photonics 
653 |a Nanoscale Science and Technology 
653 |a Lasers 
653 |a Optics, Lasers, Photonics, Optical Devices 
653 |a Optical materials 
653 |a Ceramics, Glass, Composites, Natural Materials 
653 |a Composites (Materials) 
653 |a Optical and Electronic Materials 
700 1 |a Mihaiu, Susana  |e [author] 
700 1 |a Preda, Silviu  |e [author] 
700 1 |a Zaharescu, Maria  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Materials 
856 4 0 |u https://doi.org/10.1007/978-3-319-32988-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.14 
520 |a This book presents wet chemical sol-gel and hydrothermal methods for 1D oxide nanostructure preparation. These methods represent an attractive route to multifunctional nanomaterials synthesis, as they are versatile, inexpensive and, thus, appropriate for obtaining a wide range of oxide materials with tailored morphology and properties. Three specific oxides (SiO2, TiO2, ZnO) are discussed in detail in order to illustrate the principle of the sol-gel and hydrothermal preparation of 1D oxide nanostructures. Other oxides synthesized via this method are also briefly presented.  Throughout the book, the correlation between the tubular structure and the physico-chemical properties of these materials is highlighted. 1D oxide nanostructures exhibit interesting optical and electrical properties, due to their confined morphology. In addition, a well-defined geometry can be associated with chemically active species. For example, the pure SiO2 nanotubes presented a slight photocatalytic activity, while the Pt-doped SiO2 tubular materials act as microreactors in catalytic reactions. In the case of titania and titanate nanotubes, large specific surface area and pore volume, ion-exchange ability, enhanced light absorption, and fast electron-transport capability have attracted significant research interest. The chemical and physical modifications (microwave assisted hydrothermal methods) discussed here improve the formation kinetics of the nanotubes. The ZnO nanorods/tubes were prepared as random particles or as large areas of small, oriented 1D ZnO nanostructures on a variety of substrates. In the latter case a sol-gel layer is deposited on the substrate prior to the hydrothermal preparation. Using appropriate dopants, coatings of ZnO nanorods with controlled electrical behavior can be obtained