Diffractive Optics and Nanophotonics Resolution Below the Diffraction Limit

In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz ra...

Full description

Bibliographic Details
Main Authors: Minin, Igor, Minin, Oleg (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2016, 2016
Edition:1st ed. 2016
Series:SpringerBriefs in Physics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03221nmm a2200361 u 4500
001 EB001085919
003 EBX01000000000000000845283
005 00000000000000.0
007 cr|||||||||||||||||||||
008 151215 ||| eng
020 |a 9783319242538 
100 1 |a Minin, Igor 
245 0 0 |a Diffractive Optics and Nanophotonics  |h Elektronische Ressource  |b Resolution Below the Diffraction Limit  |c by Igor Minin, Oleg Minin 
250 |a 1st ed. 2016 
260 |a Cham  |b Springer International Publishing  |c 2016, 2016 
300 |a XIV, 65 p. 26 illus., 6 illus. in color  |b online resource 
505 0 |a Foreword -- Introduction -- 1 3D Diffractive Lenses to Overcome the 3D Abby diffraction limit -- 2 Subwavelength Focusing Properties of Diffractive Photonic Crystal Lens -- 3 Photonic Jet Formation By Non Spherical Axially and Spatially Asymmetric 3D Dielectric Particles -- 4 SPP Diffractive Lens as one of the Basic Devices for Plasmonic Information Processing -- Conclusion 
653 |a Nanophysics 
653 |a Laser 
653 |a Optical Materials 
653 |a Nanoscience 
653 |a Lasers 
653 |a Telecommunication 
653 |a Optical materials 
653 |a Microwaves, RF Engineering and Optical Communications 
700 1 |a Minin, Oleg  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Physics 
028 5 0 |a 10.1007/978-3-319-24253-8 
856 4 0 |u https://doi.org/10.1007/978-3-319-24253-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.366 
520 |a In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Terahertz frequencies (terajets) using 3D dielectric particles of arbitrary size (cuboids) is considered.  A scheme to create a 2D “teraknife” using dielectric rods is also discussed.  In the final chapter the successful adaptation of free-space 3D binary phase-reversal conical FZPs for operation on surface plasmon-polariton (SPP) waves demonstrates that analogues of Fourier diffractive components can be developed for in-plane SPP 3D optics. Review ing theory, modelling and experiment, this book will be a valuable resource for students and researchers working on nanophotonics and sub-wavelength focusing and imaging