Development of an Ultrafast Low-Energy Electron Diffraction Setup

This book presents an Ultrafast Low-Energy Electron Diffraction (ULEED) system that reveals ultrafast structural changes on the atomic scale.  The achievable temporal resolution in the low-energy regime is improved by several orders of magnitude and has enabled the the melting of a highly-sensitive,...

Full description

Bibliographic Details
Main Author: Gulde, Max
Format: eBook
Language:English
Published: Cham Springer International Publishing 2015, 2015
Edition:1st ed. 2015
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02147nmm a2200337 u 4500
001 EB001034132
003 EBX01000000000000000827654
005 00000000000000.0
007 cr|||||||||||||||||||||
008 150601 ||| eng
020 |a 9783319185613 
100 1 |a Gulde, Max 
245 0 0 |a Development of an Ultrafast Low-Energy Electron Diffraction Setup  |h Elektronische Ressource  |c by Max Gulde 
250 |a 1st ed. 2015 
260 |a Cham  |b Springer International Publishing  |c 2015, 2015 
300 |a XVII, 138 p. 62 illus., 28 illus. in color  |b online resource 
505 0 |a Introduction -- Methods and Concepts -- Aspects of Ultrafast LEED -- Numerical Analysis of a Tip-Based Ultrafast Electron Gun -- Experimental Analysis of a Tip-Based Ultrafast Electron Gun -- Ultrafast PMMA Superstructure Dynamics on Free-Standing Graphene -- Conclusions.  
653 |a Surface and Interface and Thin Film 
653 |a Spectrum analysis 
653 |a Thin films 
653 |a Spectroscopy 
653 |a Surfaces, Interfaces and Thin Film 
653 |a Surfaces (Technology) 
653 |a Surfaces (Physics) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
028 5 0 |a 10.1007/978-3-319-18561-3 
856 4 0 |u https://doi.org/10.1007/978-3-319-18561-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.417 
520 |a This book presents an Ultrafast Low-Energy Electron Diffraction (ULEED) system that reveals ultrafast structural changes on the atomic scale.  The achievable temporal resolution in the low-energy regime is improved by several orders of magnitude and has enabled the the melting of a highly-sensitive, molecularly thin layer of a polymer crystal to be resolved for the first time.This new experimental approach permits time-resolved structural investigations of systems that were previously partially or totally inaccessible, including surfaces, interfaces and atomically thin films. It will be of fundamental importance for understanding the properties of nanomaterials so as to tailor their properties