Modeling, characterization and production of nanomaterials electronics, photonics and energy applications

Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating q...

Full description

Bibliographic Details
Other Authors: Tewary, Vinod (Editor), Zhang, Yong (Editor)
Format: eBook
Language:English
Published: Cambridge, UK Woodhead Publishing 2015, 2015
Series:Woodhead Publishing series in electronic and optical materials
Subjects:
Online Access:
Collection: Elsevier ScienceDirect eBooks - Collection details see MPG.ReNa
LEADER 04683nmm a2200409 u 4500
001 EB001033398
003 EBX01000000000000000826920
005 00000000000000.0
007 cr|||||||||||||||||||||
008 150528 ||| eng
020 |a 9781782422280 
020 |a 9781782422358 
020 |a 1782422285 
020 |a 1782422358 
100 1 |a Tewary, Vinod  |e [editor] 
245 0 0 |a Modeling, characterization and production of nanomaterials  |h Elektronische Ressource  |b electronics, photonics and energy applications  |c edited by Vinod K. Tewary and Yong Zhang 
260 |a Cambridge, UK  |b Woodhead Publishing  |c 2015, 2015 
300 |a online resource 
505 0 |a Multiscale Green's functions for modeling of nanomaterials ; 2.1. Introduction; 2.1.1. Need for bridging length scales; 2.1.2. Bridging the time scales; 2.1.3. Application; 2.2. Green's function method: the basics; 2.3. Discrete lattice model of a solid; 2.4. Lattice statics Greens function; 2.5. Multiscale Green's function 
505 0 |a TEM studies of nanostructures4.1. Introduction; 4.2. Polarity determination and stacking faults of 1D ZnO nanostructures; 4.2.1. Polarity determination in 1D ZnO nanostructures; 4.2.2. Stacking-fault-induced growth of ultrathin ZnO nanobelts; 4.3. Structure analysis of superlattice nanowire by TEM: a case of SnO2 (ZnO:Sn)n nanowire; 4.4. TEM analysis of 1D nanoheterostructure; 4.4.1. Axially heterostructured nanowires; 4.4.2. Coaxial core-shell nanowires; 4.4.2.1. Highly lattice-mismatched ZnO/ZnSe and ZnO/ZnS core-shell nanowires 
505 0 |a 1.2.2. Classical mechanics1.2.2.1. Molecular mechanics; 1.2.2.2. Molecular dynamics; 1.2.2.3. Monte Carlo; 1.2.2.4. Forcefields; 1.2.2.5. Applications of classical tools to nanomaterials; 1.2.3. Mesoscale; 1.2.3.1. Models; 1.2.3.2. Forcefields; 1.2.3.3. Potentials; 1.2.3.4. Dynamics; 1.2.3.5. Parameterization; 1.2.4. Multiscale modeling; 1.2.4.1. Hierarchical methods; 1.2.4.2. Hybrid methods; 1.2.4.3. QM/MM; 1.3. Nanomaterials; 1.3.1. Polymer nanocomposites; 1.3.2. Inorganic nanostructures; 1.3.2.1. Zeolites; 1.3.2.2. Metal-organic frameworks (MOFs); 1.3.2.3. Catalysts; 1.3.3. Soft matter 
505 0 |a Numerical simulation of nanoscale systems and materials; 3.1. Introduction; 3.2. Molecular statics and dynamics: an overview; 3.3. Static calculations of strain due to interface; 3.4. Dynamic calculations of kinetic frictional properties; 3.5. Fundamental properties of dynamic ripples in graphene; 3.6. Conclusions and general remarks; Disclaimer; Acknowledgments; References; Part Two: Characterization techniques for nanomaterials 
505 0 |a Electronics, Photonics and Energy Applications; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Part One: Modeling techniques for nanomaterials; Chapter 1: Multiscale modeling of nanomaterials: recent developments and future prospects; 1.1. Introduction; 1.2. Methods; 1.2.1. Quantum mechanics; 1.2.1.1. Introduction; 1.2.1.2. Hartree-Fock theory; 1.2.1.3. Electron-correlated methods; 1.2.1.4. Density functional theory; 1.2.1.5. Other methods 
653 |a Nanostructured materials / fast / (OCoLC)fst01032630 
653 |a TECHNOLOGY & ENGINEERING / Reference / bisacsh 
653 |a Photonics 
653 |a Nanostructured materials 
653 |a Nanotechnology 
653 |a TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh 
700 1 |a Zhang, Yong  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b ESD  |a Elsevier ScienceDirect eBooks 
490 0 |a Woodhead Publishing series in electronic and optical materials 
500 |a Includes index 
856 4 0 |u http://www.sciencedirect.com/science/book/9781782422280  |x Verlag  |3 Volltext 
082 0 |a 620.1/15 
520 |a Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications