Probing Crystal Plasticity at the Nanoscales Synchrotron X-ray Microdiffraction

This Brief highlights the search for strain gradients and geometrically necessary dislocations as a possible source of strength for two cases of deformation of materials at small scales: nanoindented single crystal copper and uniaxially compressed single crystal submicron gold pillars. When crystall...

Full description

Bibliographic Details
Main Author: Budiman, Arief Suriadi
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2015, 2015
Edition:1st ed. 2015
Series:SpringerBriefs in Applied Sciences and Technology
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02390nmm a2200373 u 4500
001 EB000913670
003 EBX01000000000000000709566
005 00000000000000.0
007 cr|||||||||||||||||||||
008 150107 ||| eng
020 |a 9789812873354 
100 1 |a Budiman, Arief Suriadi 
245 0 0 |a Probing Crystal Plasticity at the Nanoscales  |h Elektronische Ressource  |b Synchrotron X-ray Microdiffraction  |c by Arief Suriadi Budiman 
250 |a 1st ed. 2015 
260 |a Singapore  |b Springer Nature Singapore  |c 2015, 2015 
300 |a IX, 118 p. 64 illus., 52 illus. in color  |b online resource 
505 0 |a From the Contents: Introduction -- Synchrotron White-beam X-ray Microdiffraction at the Advanced Light Source, Berkeley Lab -- Electromigration-induced Plasticity in Cu Interconnects: The Length Scale Dependence 
653 |a Spectrum analysis 
653 |a Spectroscopy 
653 |a Microtechnology 
653 |a Crystallography 
653 |a Microsystems and MEMS. 
653 |a Nanotechnology 
653 |a Materials / Analysis 
653 |a Characterization and Analytical Technique 
653 |a Microelectromechanical systems 
653 |a Crystallography and Scattering Methods 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a SpringerBriefs in Applied Sciences and Technology 
028 5 0 |a 10.1007/978-981-287-335-4 
856 4 0 |u https://doi.org/10.1007/978-981-287-335-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620,112 
520 |a This Brief highlights the search for strain gradients and geometrically necessary dislocations as a possible source of strength for two cases of deformation of materials at small scales: nanoindented single crystal copper and uniaxially compressed single crystal submicron gold pillars. When crystalline materials are mechanically deformed in small volumes, higher stresses are needed for plastic flow. This has been called the "Smaller is Stronger" phenomenon and has been widely observed. studies suggest that plasticity in one case is indeed controlled by the GNDs (strain gradient hardening), whereas in the other, plasticity is not controlled by strain gradients or sub-structure hardening, but rather by dislocation source starvation, wherein smaller volumes are stronger because fewer sources of dislocations are available (dislocation starvation hardening)