Nonlinear fiber optics

Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical fi...

Full description

Bibliographic Details
Main Author: Agrawal, G. P.
Format: eBook
Language:English
Published: Oxford Academic 2013, 2013
Edition:5th ed
Subjects:
Online Access:
Collection: Elsevier ScienceDirect eBooks - Collection details see MPG.ReNa
Table of Contents:
  • ch. 1 Introduction
  • 1.1. Historical Perspective
  • 1.2. Fiber Characteristics
  • 1.2.1. Material and Fabrication
  • 1.2.2. Fiber Losses
  • 1.2.3. Chromatic Dispersion
  • 1.2.4. Polarization-Mode Dispersion
  • 1.3. Fiber Nonlinearities
  • 1.3.1. Nonlinear Refraction
  • 1.3.2. Stimulated Inelastic Scattering
  • 1.3.3. Importance of Nonlinear Effects
  • 1.4. Overview
  • Problems
  • References
  • ch. 2 Pulse Propagation in Fibers
  • 2.1. Maxwell's Equations
  • 2.2. Fiber Modes
  • 2.2.1. Eigenvalue Equation
  • 2.2.2. Single-Mode Condition
  • 2.2.3. Characteristics of the Fundamental Mode
  • 2.3. Pulse-Propagation Equation
  • 2.3.1. Nonlinear Pulse Propagation
  • 2.3.2. Higher-Order Nonlinear Effects
  • 2.3.3. Raman Response Function and its Impact
  • 2.3.4. Extension to Multimode Fibers
  • 2.4. Numerical Methods
  • 2.4.1. Split-Step Fourier Method
  • 2.4.2. Finite-Difference Methods
  • Problems
  • References
  • ch. 3 Group-Velocity Dispersion
  • 3.1. Different Propagation Regimes
  • 3.2. Dispersion-Induced Pulse Broadening
  • 3.2.1. Gaussian Pulses
  • 3.2.2. Chirped Gaussian Pulses
  • 3.2.3. Hyperbolic-Secant Pulses
  • 3.2.4. Super-Gaussian Pulses
  • 3.2.5. Experimental Results
  • 3.3. Third-Order Dispersion
  • 3.3.1. Evolution of Chirped Gaussian Pulses
  • 3.3.2. Broadening Factor
  • 3.3.3. Arbitrary-Shape Pulses
  • 3.3.4. Ultrashort-Pulse Measurements
  • 3.4. Dispersion Management
  • 3.4.1. GVD-Induced Limitations
  • 3.4.2. Dispersion Compensation
  • 3.4.3.Compensation of Third-Order Dispersion
  • Problems
  • References
  • ch. 4 Self-Phase Modulation
  • 4.1. SPM-Induced Spectral Changes
  • 4.1.1. Nonlinear Phase Shift
  • 4.1.2. Changes in Pulse Spectra
  • 4.1.3. Effect of Pulse Shape and Initial Chirp
  • 4.1.4. Effect of Partial Coherence
  • 4.2. Effect of Group-Velocity Dispersion
  • 4.2.1. Pulse Evolution
  • 4.2.2. Broadening Factor
  • 4.2.3. Optical Wave Breaking
  • 4.2.4. Experimental Results
  • 4.2.5. Effect of Third-Order Dispersion
  • 4.2.6. SPM Effects in Fiber Amplifiers
  • 4.3. Semianalytic Techniques
  • 4.3.1. Moment Method
  • 4.3.2. Variational Method
  • 4.3.3. Specific Analytic Solutions
  • 4.4. Higher-Order Nonlinear Effects
  • 4.4.1. Self-Steepening
  • 4.4.2. Effect of GVD on Optical Shocks
  • 4.4.3. Intrapulse Raman Scattering
  • Problems
  • References
  • ch. 5 Optical Solitons
  • 5.1. Modulation Instability
  • 5.1.1. Linear Stability Analysis
  • 5.1.2. Gain Spectrum
  • 5.1.3. Experimental Results
  • 5.1.4. Ultrashort Pulse Generation
  • 5.1.5. Impact on Lightwave Systems
  • 5.2. Fiber Solitons
  • 5.2.1. Inverse Scattering Method
  • 5.2.2. Fundamental Soliton
  • 5.2.3. Second and Higher-Order Solitons
  • 5.2.4. Experimental Confirmation
  • 5.2.5. Soliton Stability
  • 5.3. Other Types of Solitons
  • 5.3.1. Dark Solitons
  • 5.3.2. Bistable Solitons
  • 5.3.3. Dispersion-Managed Solitons
  • 5.3.4. Optical Similaritons
  • 5.4. Perturbation of Solitons
  • 5.4.1. Perturbation Methods
  • 5.4.2. Fiber Losses
  • 5.4.3. Soliton Amplification
  • 5.4.4. Soliton Interaction
  • 5.5. Higher-Order Effects
  • 5.5.1. Moment Equations for Pulse Parameters
  • 5.5.2. Third-Order Dispersion
  • 5.5.3. Self-Steepening
  • 5.5.4. Intrapulse Raman Scattering
  • 5.5.5. Propagation of Femtosecond Pulses
  • Problems
  • References
  • ch. 6 Polarization Effects
  • 6.1. Nonlinear Birefringence
  • 6.1.1. Origin of Nonlinear Birefringence
  • 6.1.2. Coupled-Mode Equations
  • 6.1.3. Elliptically Birefringent Fibers
  • 6.2. Nonlinear Phase Shift
  • 6.2.1. Nondispersive XPM
  • 6.2.2. Optical Kerr Effect
  • 6.2.3. Pulse Shaping
  • 6.3. Evolution of Polarization State
  • 6.3.1. Analytic Solution
  • 6.3.2. Poincare-Sphere Representation
  • 6.3.3. Polarization Instability
  • 6.3.4. Polarization Chaos
  • 6.4. Vector Modulation Instability
  • 6.4.1. Low-Birefringence Fibers
  • 6.4.2. High-Birefringence Fibers
  • 6.4.3. Isotropic Fibers
  • 6.4.4. Experimenta
  • 6.5. Birefringence and Solitons
  • 6.5.1. Low-Birefringence Fibers
  • 6.5.2. High-Birefringence Fibers
  • 6.5.3. Soliton-Dragging Logic Gates
  • 6.5.4. Vector Solitons
  • 6.6. Random Birefringence
  • 6.6.1. Polarization-Mode Dispersion
  • 6.6.2. Vector Form of the NLS Equation
  • 6.6.3. Effects of PMD on Solitons
  • Problems
  • References
  • ch. 7 Cross-Phase Modulation
  • 7.1. XPM-Induced Nonlinear Coupling
  • 7.1.1. Nonlinear Refractive Index
  • 7.1.2. Coupled NLS Equations
  • 7.2. XPM-Induced Modulation Instability
  • 7.2.1. Linear Stability Analysis
  • 7.2.2. Experimental Results
  • 7.3. XPM-Paired Solitons
  • 7.3.1. Bright-Dark Soliton Pair
  • 7.3.2. Bright-Gray Soliton Pair
  • 7.3.3. Periodic Solutions
  • 7.3.4. Multiple Coupled NLS Equations
  • 7.4. Spectral and Temporal Effects
  • 7.4.1. Asymmetric Spectral Broadening
  • 7.4.2. Asymmetric Temporal Changes
  • 7.4.3. Higher-Order Nonlinear Effects
  • 7.5. Applications of XPM
  • 7.5.1. XPM-Induced Pulse Compress
  • 7.5.2. XPM-Induced Optical Switching
  • 7.5.3. XPM-Induced Nonreciprocity
  • 7.6. Polarization Effects
  • 7.6.1. Vector Theory of XPM
  • 7.6.2. Polarization Evolution
  • 7.6.3. Polarization-Dependent Spectral Broadening
  • 7.6.4. Pulse Trapping and Compression
  • 7.6.5. XPM-Induced Wave Breaking
  • 7.7. XPM Effects in Birefringent Fibers
  • 7.7.1. Fibers with Low Birefringence
  • 7.7.2. Fibers with High Birefringence
  • Problems
  • References
  • ch. 8 Stimulated Raman Scattering
  • 8.1. Basic Concepts
  • 8.1.1. Raman-Gain Spectrum
  • 8.1.2. Raman Threshold
  • 8.1.3. Coupled Amplitude Equations
  • 8.1.4. Effect of Four-Wave Mixing
  • 8.2. Quasi-Continuous SRS
  • 8.2.1. Single-Pass Raman Generation
  • 8.2.2. Raman Fiber Lasers
  • 8.2.3. Raman Fiber Amplifiers
  • 8.2.4. Raman-Induced Crosstalk
  • 8.3. SRS with Short Pump Pulses
  • 8.3.1. Pulse-Propagation Equations
  • 8.3.2. Nondispersive Case
  • 8.3.3. Effects of GVD
  • 8.3.4. Raman-Induced Index Changes
  • 8.3.5. Experimental Results
  • 8.3.6. Synchronously Pumped Raman Lasers
  • 8.3.7. Short-Pulse Raman Amplification
  • 8.4. Soliton Effects
  • 8.4.1. Raman Solitons
  • 8.4.2. Raman Soliton Lasers
  • 8.4.3. Soliton-Effect Pulse Compression
  • 8.5. Polarization Effects
  • 8.5.1. Vector Theory of Raman Amplification
  • 8.5.2. PMD Effects on Raman Amplification
  • Problems
  • References
  • ch. 9 Stimulated Brillouin Scattering
  • 9.1. Basic Concepts
  • 9.1.1. Physical Process
  • 9.1.2. Brillouin-Gain Spectrum
  • 9.2. Quasi-CW SBS
  • 9.2.1. Brillouin Threshold
  • 9.2.2. Polarization Effects
  • 9.2.3. Techniques for Controlling the SBS Threshold
  • 9.2.4. Experimental Results
  • 9.3. Brillouin-Fiber Amplifiers
  • 9.3.1. Gain Saturation
  • 9.3.2. Amplifier Design and Applications
  • 9.4. SBS Dynamics
  • 9.4.1. Coupled Amplitude Equations
  • 9.4.2. SBS with Q-Switched Pulses
  • 9.4.3. SBS-Induced Index Changes
  • 9.4.4. Relaxation Oscillations
  • 9.4.5. Modulation Instability
  • 9.5. Brillouin-Fiber Lasers
  • 9.5.1. CW Operation
  • 9.5.2. Pulsed Operation
  • Problems
  • References
  • ch. 10 Four-Wave Mixing
  • 10.1. Origin of Four-Wave Mixing
  • 10.2. Theory of Four-Wave Mixing
  • 10.2.1. Coupled Amplitude Equations
  • 10.2.2. Approximate Solution
  • 10.2.3. Effect of Phase Matching
  • 10.2.4. Ultrafast Four-Wave Mixing
  • 10.3. Phase-Matching Techniques
  • 10.3.1. Physical Mechanisms
  • 10.3.2. Phase Matching in Multimode Fibers
  • 10.3.3. Phase Matching in Single-Mode Fibers
  • 10.3.4. Phase Matching in Birefringent Fibers
  • 10.4. Parametric Amplification
  • 10.4.1. Review of Early Work
  • 10.4.2. Gain Spectrum and Its Bandwidth
  • 10.4.3. Single-Pump Configuration
  • 10.4.4. Dual-Pump Configuration
  • 10.4.5. Effects of Pump Depletion
  • 10.5. Polarization Effects
  • 10.5.1. Vector Theory of Four-Wave Mixing
  • 10.5.2. Polarization Dependence of Parametric Gain
  • 10.5.3. Linearly and Circularly Polarized Pumps
  • 10.5.4. Effect of Residual Fiber Birefringence
  • 10.6. Applications of Four-Wave Mixing
  • 10.6.1. Parametric Oscillators
  • 10.6.2. Ultrafast Signal Processing
  • 10.6.3. Quantum Correlation and Noise Squeezing
  • 10.6.4. Phase-Sensitive Amplification
  • Problems
  • References
  • ch. 11 Highly Nonlinear Fibers
  • 11.1. Nonlinear Parameter
  • 11.1.1. Units and Values of n2
  • 11.1.2. SPM-Based Techniques
  • 11.1.3. XPM-Based Technique
  • 11.1.4. FWM-Based Technique
  • 11.1.5. Variations in n2 Values
  • 11.2. Fibers with Silica Cladding
  • 11.3. Tapered Fibers with Air Cladding
  • 11.4. Microstructured Fibers
  • 11.4.1. Design and Fabrication
  • 11.4.2. Modal and Dispersive Properties
  • 11.4.3. Hollow-Core Photonic Crystal Fibers
  • 11.4.4. Bragg Fibers
  • 11.5. Non-Silica Fibers
  • 11.5.1. Lead-Silicate Fibers
  • 11.5.2. Chalcogenide Fibers
  • 11.5.3. Bismuth-Oxide Fibers
  • 11.6. Pulse Propagation in Narrow-Core Fibers
  • 11.6.1. Vectorial Theory
  • 11.6.2. Frequency-Dependent Mode Profiles
  • Problems
  • References
  • ch. 12 Novel Nonlinear Phenomena
  • 12.1. Soliton Fission and Dispersive Waves
  • 12.1.1. Fission of Second- and Higher-Order Solitons
  • 12.1.2. Generation of Dispersive Waves
  • 12.2. Intrapulse Raman Scattering
  • 12.2.1. Enhanced RIFS Through Soliton Fission
  • 12.2.2. Cross-correlation Technique
  • 12.2.3. Wavelength Tuning through RIFS
  • 12.2.4. Effects of Birefringence
  • 12.2.5. Suppression of Raman-Induced Frequency Shifts
  • 12.2.6. Soliton Dynamics Near a Zero-Dispersion Wavelength
  • 12.2.7. Multipeak Raman Solitons
  • 12.3. Four-Wave Mixing
  • 12.3.1. Role of Fourth-Order Dispersion
  • 12.3.2. Role of Fiber Birefringence
  • 12.3.3. Parametric Amplifiers and Wavelength Converters
  • 12.3.4. Tunable Fiber-Optic Parametric Oscillators
  • 12.4. Second-Harmonic Generation
  • 12.4.1. Physical Mechanisms
  • 12.4.2. Thermal Poling and Quasi-Phase Matching
  • 12.4.3. SHG Theory
  • 12.5. Third-Harmonic Generation
  • 12.5.1. THG in Highly Nonlinear Fibers
  • 12.5.2. Effects of Group-Velocity Mismatch
  • 12.5.3. Effects of Fiber Birefringence
  • Problems
  • References
  • ch. 13 Supercontinuum Generation
  • 13.1. Pumping with Picosecond Pulses
  • 13.1.1. Nonlinear Mechanisms
  • 13.1.2. Experimental Progress After 2000
  • 13.2. Pumping with Femtosecond Pulses
  • 13.2.1. Microstructured Silica Fibers
  • 13.2.2. Microstructured Nonsilica Fibers
  • 13.3. Temporal and Spectral Evolutions
  • 13.3.1. Numerical Modeling of Supercontinuum
  • 13.3.2. Role of Cross-Phase Modulation
  • 13.3.3. XPM-Induced Trapping
  • 13.3.4. Role of Four-Wave Mixing
  • 13.4. CW or Quasi-CW Pumping
  • 13.4.1. Nonlinear Mechanisms
  • 13.4.2. Experimental Progress
  • 13.5. Polarization Effects
  • 13.5.1. Birefringent Microstructured Fibers
  • 13.5.2. Nearly Isotropic Fibers
  • 13.5.3. Nonlinear Polarization Rotation in Isotropic Fibers
  • 13.6. Coherence Properties
  • 13.6.1. Spectral-Domain Degree of Coherence
  • 13.6.2. Techniques for Improving Coherence
  • 13.6.3. Spectral Incoherent Solitons
  • 13.7. Optical Rogue Waves
  • 13.7.1.L-Shaped Statistics of Pulse-to-Pulse Fluctuations
  • 13.7.2. Techniques for Controlling Rogue-Wave Statistics
  • 13.7.3. Modulation Instability Revisited
  • Problems
  • References