Dynamics in Geometrical Confinement

This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or selfsupporting films (1-dimensional confinement) (i...

Full description

Bibliographic Details
Other Authors: Kremer, Friedrich (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2014, 2014
Edition:1st ed. 2014
Series:Advances in Dielectrics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03734nmm a2200385 u 4500
001 EB000798867
003 EBX01000000000000000650299
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140701 ||| eng
020 |a 9783319061009 
100 1 |a Kremer, Friedrich  |e [editor] 
245 0 0 |a Dynamics in Geometrical Confinement  |h Elektronische Ressource  |c edited by Friedrich Kremer 
250 |a 1st ed. 2014 
260 |a Cham  |b Springer International Publishing  |c 2014, 2014 
300 |a VIII, 366 p. 184 illus., 116 illus. in color  |b online resource 
505 0 |a Dielectric Relaxation of a Polybutadiene Melt at a Crystalline Graphite Surface: Atomistic Molecular Dynamics Simulations.-Glass Transition of Ultra-Thin Polymeric Films - A Combination of Relaxation Spectroscopy with Surface Analytic -- Molecular Dynamics of Condensed (Semi)-Isolated Polymer Chains.-Molecular Dynamics of cis-1,4 -Polyisoprene in 1 - and 2 - Dimensional Confinement -- Rotational Diffusion of Guest Molecules Confined in Uni-Directional Nanopores.- Rotational and Translational Diffusion of Ionic Liquids in Silica-Nanopores -- Polymer Nanofluidics by Broadband Dielectric Spectroscopy -- Heterogeneous Dynamics of Multi-Layered Thin Polymer Films -- Molecular Mobility and Phase Transformations of several low Molecular Weight Glass Formers Confined to Nanoporous Silica Matrices -- Deviations from Bulk Glass Transition Dynamics of small Molecule Glass Formers: Some Scenarios in Relation to the Dimensionality of the Confining Geometry -- Anomalous Decoupling of Translational and Rotation Motion under 1D Confinement, Evidences from Crystallization and Diffusion Experiments -- Dynamic Calorimetric Glass Transition in Thin Polymer Films -- Equilibrium and Out-of-Equilibrium Dynamics in Confined Polymers by Dielectric Spectroscopy and Calorimetric Techniques 
653 |a Soft and Granular Matter 
653 |a Physical chemistry 
653 |a Thin films 
653 |a Ceramic materials 
653 |a Polymers 
653 |a Physical Chemistry 
653 |a Ceramics 
653 |a Surfaces, Interfaces and Thin Film 
653 |a Nanotechnology 
653 |a Soft condensed matter 
653 |a Surfaces (Technology) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Advances in Dielectrics 
028 5 0 |a 10.1007/978-3-319-06100-9 
856 4 0 |u https://doi.org/10.1007/978-3-319-06100-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.192 
520 |a This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or selfsupporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets. The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore diameters. "Dynamics in Confinement" sums up the present state-of-the-art and introduces to the analytical methods of choice for the study of dynamics in nanometer-scale confinement