Blind Source Separation Advances in Theory, Algorithms and Applications

Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Naik, Ganesh R. (Editor), Wang, Wenwu (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2014, 2014
Edition:1st ed. 2014
Series:Signals and Communication Technology
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03290nmm a2200421 u 4500
001 EB000739801
003 EBX01000000000000000591233
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140602 ||| eng
020 |a 9783642550164 
100 1 |a Naik, Ganesh R.  |e [editor] 
245 0 0 |a Blind Source Separation  |h Elektronische Ressource  |b Advances in Theory, Algorithms and Applications  |c edited by Ganesh R. Naik, Wenwu Wang 
250 |a 1st ed. 2014 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2014, 2014 
300 |a IX, 551 p. 189 illus  |b online resource 
505 0 |a Theory, Algorithms and Extensions Quantum independent component analysis and related statistical blind qubit uncoupling methods -- Blind source separation based on dictionary learning: a singularity-aware approach -- Performance study for complex independent component analysis -- Sub-band based- blind source separation and permutation alignment -- Frequency domain blind source separation based on independent vector analysis with a multivariate Gaussian source prior -- Sparse component analysis: a general framework for linear or nonlinear blind unmixing of signals or images -- Underdetermined audio source separation using Laplacian mixture modelling -- Itakura-Saito nonnegative matrix two-dimensional factorizations for blind single channel audio separation -- Source localisation and tracking: a maximum a posterior based approach -- Section 2: Applications Statistical analysis and evaluation of blind speech extraction algorithms -- Speech separation and extraction by combin 
653 |a Computational Mathematics and Numerical Analysis 
653 |a Biomedical Engineering and Bioengineering 
653 |a Biomedical engineering 
653 |a Computational intelligence 
653 |a Image processing 
653 |a Computational Intelligence 
653 |a Signal, Image and Speech Processing 
653 |a Speech processing systems 
653 |a Computer mathematics 
653 |a Signal processing 
653 |a Optical data processing 
653 |a Computer Imaging, Vision, Pattern Recognition and Graphics 
700 1 |a Wang, Wenwu  |e [editor] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Signals and Communication Technology 
856 |u https://doi.org/10.1007/978-3-642-55016-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.382 
520 |a Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.