Assessment of Total Evacuation Systems for Tall Buildings

This SpringerBrief focuses on the use of egress models to assess the optimal strategy for total evacuation in high-rise buildings. It investigates occupant relocation and evacuation strategies involving the exit stairs, elevators, sky bridges and combinations thereof. Chapters review existing inform...

Full description

Bibliographic Details
Main Authors: Ronchi, Enrico, Nilsson, Daniel (Author)
Format: eBook
Language:English
Published: New York, NY Springer New York 2014, 2014
Edition:1st ed. 2014
Series:SpringerBriefs in Fire
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:This SpringerBrief focuses on the use of egress models to assess the optimal strategy for total evacuation in high-rise buildings. It investigates occupant relocation and evacuation strategies involving the exit stairs, elevators, sky bridges and combinations thereof. Chapters review existing information on this topic and describe case study simulations of a multi-component exit strategy. This review provides the architectural design, regulatory and research communities with a thorough understanding of the current and emerging evacuation procedures and possible future options. A model case study simulates seven possible strategies for the total evacuation of two identical twin towers linked with two sky-bridges at different heights. The authors present the layout of the building and the available egress components including both vertical and horizontal egress components, namely stairs, occupant evacuation elevators (OEEs), service elevators, transfer floors and sky-bridges. The evacuation strategies employ a continuous spatial representation evacuation model (Pathfinder) and are cross-validated by a fine network model (STEPS). Assessment of Total Evacuation Systems for Tall Buildings is intended for practitioners as a tool for analyzing evacuation methods and efficient exit strategies. Researchers working in architecture and fire safety will also find the book valuable
Physical Description:XIII, 51 p. 32 illus., 24 illus. in color online resource
ISBN:9781493910748