Media and Mixes for Container-Grown Plants A manual on the preparation and use of growing media for pot plants

The past two decades have seen rapid advances in the technology used to produce pot plants. Glasshouses designed and orientated to give maxi­ mum light transmission, fully automatic heating and ventilating systems, carbon dioxide enrichment of the atmosphere, controlled photoperiods using automatic...

Full description

Bibliographic Details
Main Author: Bunt, B.R.
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1988, 1988
Edition:1st ed. 1988
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 05471nmm a2200325 u 4500
001 EB000719534
003 EBX01000000000000000572616
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9789401179041 
100 1 |a Bunt, B.R. 
245 0 0 |a Media and Mixes for Container-Grown Plants  |h Elektronische Ressource  |b A manual on the preparation and use of growing media for pot plants  |c by B.R. Bunt 
250 |a 1st ed. 1988 
260 |a Dordrecht  |b Springer Netherlands  |c 1988, 1988 
300 |a XXI, 309 p. 47 illus  |b online resource 
505 0 |a 6.4 Magnesium -- 6.5 Sulphur -- 6.6 Slow-release fertilizers -- 6.7 Mineral soil and peat comparison -- 6.8 Nutrient and environment interactions -- 6.9 Fertilizer analysis and salt index -- 6.10 Plant mineral levels -- 6.11 Foliar feeding -- 7 Microelements -- 7.1 Boron -- 7.2 Copper -- 7.3 Manganese -- 7.4 Molybdenum -- 7.5 Iron -- 7.6 Zinc -- 7.7 Chloride -- 7.8 Aluminium -- 7.9 Fritted microelements -- 7.10 Chelated microelements -- 7.11 Inorganic salts and proprietary fertilizers -- 7.12 Other sources -- 7.13 Microelement availability -- 7.14 Foliar sprays -- 8 Mix formulation and preparation page -- 8.1 Historical -- 8.2 Denmark -- 8.3 Finland -- 8.4 Germany -- 8.5 Ireland -- 8.6 Netherlands -- 8.7 Norway -- 8.8 United Kingdom -- 8.9 United States of America -- 8.10 Hardy nursery stock -- 8.11 Azalea mixes -- 8.12 Protea mix -- 8.13 Proprietary formulations -- 8.14 Mix preparation -- 9 Liquid feeding -- 9.1 Principles of feeding -- 9.2 Formulating liquid feeds --  
505 0 |a 1 Loam or loamless media? -- 1.1 Loam composts -- 1.2 Loamless mixes -- 1.3 Lightweight mixes with some mineral soil -- 2 Materials for loamless mixes -- 2.1 Peat -- 2.2 Bark -- 2.3 Other organic materials -- 2.4 Minerals -- 2.5 Plastics -- 3 Physical aspects -- 3.1 Physical terminology -- 3.2 Bulk density and total pore space -- 3.3 Water relations -- 3.4 Aeration of substrates -- 3.5 Formulating mixes -- 3.6 Wettability of mixes -- 3.7 Compaction -- 4 Principles of nutrition -- 4.1 Cation exchange capacity -- 4.2 Anion exchange capacity -- 4.3 Availability of nutrients: loam v. loamless mixes -- 4.4 Chemical analysis of lightweight media -- 4.5 Nutrient uptake by the plant page -- 4.6 Acidity (pH) -- 4.7 Lime requirement -- 4.8 Soluble salts -- 5 Nitrogen -- 5.1 Nitrogen and pot plants -- 5.2 Forms of mineral nitrogen -- 5.3 Slow-release forms -- 5.4 Choice of fertilizer type -- 5.5 Nitrogen and peat -- 6 Other macroelements -- 6.1 Phosphorus -- 6.2 Potassium -- 6.3 Calcium --  
505 0 |a 9.3 Practical aspects of feeding -- 9.4 Injection equipment -- 9.5 Quality of irrigation water -- 10 Irrigation systems -- 10.1 Drip system -- 10.2 Capillary watering -- 10.3 Flooded benches -- 10.4 Overhead sprinklers -- 11 John Innes composts -- 11.1 Formulation -- 11.2 Compost ingredients: loam -- 11.3 Peat -- 11.4 Sand -- 11.5 Pasteurization -- 11.6 Characteristics and use -- 11.7 Composts for calcifuge plants (JIS (A)) -- 11.8 Other loam-based mixes -- 12 Heat pasteurization -- 12.1 Thermal deathpoints -- 12.2 Methods of heat pasteurization Page -- 12.3 Steam -- 12.4 Steam-air mixtures -- 12.5 Flame pasteurizer -- 12.6 Electrical pasteurizers -- 12.7 Other methods -- 12.8 Chemistry of heat pasteurization -- 12.9 Rules for heat pasteurization -- 13 Chemical sterilization -- 13.1 Soil fumigants -- 13.2 Soil fungicides -- 13.3 Soil insecticides -- 14 Plant containers, modules and blocks -- 14.1 Clay v. plastic pots -- 14.2 Paper and peat pots -- 14.3 Modules and blocks --  
505 0 |a Appendices -- 1 Metric conversions -- 2 Imperial and us capacity measures -- 3 Illumination and solar radiation units -- 4 Atomic weights -- 5 Formulae and molecular weights of some commonly used chemicals -- 6 Formulae and molecular weights of some chemicals commonly used to supply microelements -- 7 Chemical gravimetric conversions -- 8 Temperature conversions 
653 |a Forestry 
653 |a Plant Physiology 
653 |a Plant physiology 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-94-011-7904-1 
856 4 0 |u https://doi.org/10.1007/978-94-011-7904-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 634.9 
082 0 |a 577.3 
520 |a The past two decades have seen rapid advances in the technology used to produce pot plants. Glasshouses designed and orientated to give maxi­ mum light transmission, fully automatic heating and ventilating systems, carbon dioxide enrichment of the atmosphere, controlled photoperiods using automatic blackouts and incandescent lamps which enable plants such as chrysanthemum to be flowered at any time of the year, mist propagation techniques, chemical growth regulators which control the height of plants, automatic watering and feeding systems, etc.: these are only some of the developments which have transformed pot plant culture. There have also been many changes in the composts and systems used to grow the plants. Mineral soils, which formed the basis of the John Innes composts, are now either too expensive or too difficult to obtain in suitable quality and sufficient quantity. Consequently the grower has been forced to seek other materials such as peat, perlite, vermiculite, plastic foam, shredded bark, etc. New types of fertilizers, new methods of heat sterilization and new chemical sterilizing agents are also being used