Non-Classical Logics and their Applications to Fuzzy Subsets A Handbook of the Mathematical Foundations of Fuzzy Set Theory

Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Höhle, Ulrich (Editor), Klement, Erich Peter (Editor)
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1995, 1995
Series:Theory and Decision Library, Series B: Mathematical and Statistical Methods
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Summary:Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: Part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids. Part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets. Part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic
Physical Description:VIII, 392 p online resource
ISBN:9789401102155