Atmospheric Thermodynamics

The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the lite...

Full description

Bibliographic Details
Main Authors: Iribarne, J. V., Godson, W. L. (Author)
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1973, 1973
Edition:1st ed. 1973
Series:Emotions, Personality, and Psychotherapy
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 3.3. Formulations of the Second Principle
  • 3.4. Lord Kelvin’s and Clausius’ Statements of the Second Principle
  • 3.5. Joint Mathematical Expressions of the First and Second Principles. Thermodynamic Potentials
  • 3.6. Equilibrium Conditions and the Sense of Natural Processes
  • 3.7. Calculation of Entropy
  • 3.8. Thermodynamic Equations of State. Calculation of Internal Energy and Enthalpy
  • 3.9. Thermodynamic Functions of Ideal Gases
  • 3.10. Entropy of Mixing for Ideal Gases
  • 3.11. Difference Between Heat Capacities at Constant Pressure and at Constant Volume
  • Problems
  • IV. Water-Air Systems
  • 4.1. Heterogeneous Systems
  • 4.2. Fundamental Equations for Open Systems
  • 4.3. Equations for the Heterogeneous System. Internal Equilibrium
  • 4.4. Summary of Basic Formulas for Heterogeneous Systems
  • 4.5. Number of Independent Variables.-4.6. Phase-Transition Equilibria for Water
  • 4.7. Thermodynamic Surface for Water Substance
  • 4.8. Clausius-Clapeyron Equation
  • 4.9. Water Vapor and Moist Air
  • 4.10. Humidity Variables
  • 4.11. Heat Capacities of Moist Air
  • 4.12. Moist Air Adiabats
  • 4.13. Enthalpy, Internal Energy and Entropy of Moist Air and of a Cloud
  • Problems
  • V. Aerological Diagrams
  • 5.1. Purpose of Aerological Diagrams and Selection of Coordinates
  • 5.2. Clapeyron Diagram
  • 5.3. Tephigram
  • 5.4. Curves for Saturated Adiabatic Expansion. Relative Orientation of Fundamental Lines
  • 5.5. Emagram or Neuhoff Diagram
  • 5.6. Refsdal Diagram
  • 5.7. Pseudoadiabatic or Stüve Diagram
  • 5.8. Area Equivalence
  • 5.9. Summary of Diagrams
  • 5.10. Determination of Mixing Ratio from the Relative Humidity
  • 5.11. Area Computation and Energy Integrals
  • Problems
  • VI. Thermodynamic Processes in the Atmosphere
  • 6.1. Isobaric Cooling. Dew and Frost Points
  • 6.2. Condensation in the Atmosphere by Isobaric Cooling
  • 6.3. Adiabatic Isobaric (Isenthalpic) Processes. Equivalent and Wet-Bulb Temperatures
  • Answers to Problems
  • 6.4. Adiabatic Isobaric Mixing (Horizontal Mixing) Without Condensation
  • 6.5. Adiabatic Isobaric Mixing with Condensation
  • 6.6. Adiabatic Expansion in the Atmosphere
  • 6.7. Saturation of Air by Adiabatic Ascent
  • 6.8. Reversible Saturated Adiabatic Process
  • 6.9. Pseudoadiabatic Process
  • 6.10. Effect of Freezing in a Cloud
  • 6.11. Vertical Mixing
  • 6.12. Pseudo- or Adiabatic Equivalent and Wet-Bulb Temperatures
  • 6.13. Summary of Temperature and Humidity Parameters. Conservative Properties
  • Problems
  • VII. Atmospheric Statics
  • 7.1. The Geopotential Field
  • 7.2. The Hydrostatic Equation
  • 7.3. Equipotential and Isobaric Surfaces. Dynamic and Geopotential Height
  • 7.4. Thermal Gradients
  • 7.5.Constant-Lapse-Rate Atmospheres
  • 7.6. Atmosphere of Homogeneous Density
  • 7.7. Dry-Adiabatic Atmosphere
  • 7.8. Isothermal Atmosphere
  • 7.9. Standard Atmosphere
  • 7.10. Altimeter
  • 7.11. Integration of the Hydrostatic Equation
  • Problems
  • VIII. Vertical Stability
  • I. Review of Basic Concepts and Systems of Units
  • 1.1. Systems
  • 1.2. Properties
  • 1.3. Composition and State of a System
  • 1.4. Equilibrium
  • 1.5. Temperature. Temperature Scales
  • 1.6. Systems of Units
  • 1.7. Work of Expansion
  • 1.8. Modifications and Processes. Reversibility
  • 1.9. State Variables and State Functions. Equation of State
  • 1.10. Equation of State for Gases
  • 1.11. Mixture of Ideal Gases
  • 1.12. Atmospheric Air Composition
  • Problems
  • II. The First Principle of Thermodynamics
  • 2.1. Internal Energy
  • 2.2. Heat
  • 2.3. The First Principle. Enthalpy
  • 2.4. Expressions of Q. Heat Capacities
  • 2.5. Calculation of Internal Energy and Enthalpy
  • 2.6. Latent Heats of Pure Substances. Kirchhoff’s Equation
  • 2.7. Adiabatic Processes in Ideal Gases. Potential Temperature
  • 2.8. Polytropic Processes
  • Problems
  • III. The Second Principle of Thermodynamics
  • 3.1. The Entropy
  • 3.2. Thermodynamic Scale of Absolute Temperature
  • 8.1. The Parcel Method
  • 8.2. Stability Criteria
  • 8.3. Lapse Rates for Dry, Moist and Saturated Adiabatic Ascents
  • 8.4. The Lapse Rates of the Parcel and of the Environment
  • 8.5. Stability Criteria for Adiabatic Processes
  • 8.6. Conditional Instability
  • 8.7. Oscillations in a Stable Layer
  • 8.8. The Layer Method for Analyzing Stability
  • 8.9. Entrainment
  • 8.10. Potential or Convective Instability
  • 8.11. Processes Producing Stability Changes for Dry Air
  • 8.12. Stability Parameters of Saturated and Unsaturated Air, and Their Time Changes
  • 8.13. Radiative Processes and Their Thermodynamic Consequences
  • 8.14. Maximum Rate of Precipitation
  • 8.15. Internal and Potential Energy of the Atmosphere
  • 8.16. Internal and Potential Energy of a Layer with Constant Lapse Rate
  • 8.17. Margules’ Calculations on Overturning Air Masses
  • 8.18. Transformations of a Layer with Constant Lapse Rate
  • 8.19. The Available Potential Energy
  • Problems
  • Appendix I