Atmospheric Tidal and Planetary Waves

Prior to the space age, meteorologists rarely paid particular attention to the height regions above the tropopause. What was known about the upper atmosphere above about 100 km came essentially from ionospheric and geomagnetic research. The region in between, presently known as the middle atmosphere...

Full description

Bibliographic Details
Main Author: Volland, Hans
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1988, 1988
Edition:1st ed. 1988
Series:Atmospheric and Oceanographic Sciences Library
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 05169nmm a2200313 u 4500
001 EB000711859
003 EBX01000000000000000564941
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9789400928619 
100 1 |a Volland, Hans 
245 0 0 |a Atmospheric Tidal and Planetary Waves  |h Elektronische Ressource  |c by Hans Volland 
250 |a 1st ed. 1988 
260 |a Dordrecht  |b Springer Netherlands  |c 1988, 1988 
300 |a X, 348 p  |b online resource 
505 0 |a 1. Introduction -- 2. Basic Equations -- 2.1. Hydrodynamic and Thermodynamic Equations -- 2.2. Equations of the Mean Flow -- 2.3. Equations of the Eddies -- 2.4. Energy Balance -- 2.5. Vorticity and Divergence -- 2.6. Linearization -- 2.7. Eliassen-Palm Flux -- 2.8. Ertel Potential Vorticity -- 2.9. Diffusive Separation of Atmospheric Constituents -- 2.10. Spherical Harmonics -- 2.11. Hermite Functions -- 3. External Energy Sources -- 3.1. Solar Irradiance -- 3.2. Solar Heat Input into Upper Atmosphere -- 3.3. Solar Heat Input into Lower and Middle Atmosphere -- 3.4. Lunar Gravitational Tidal Energy -- 3.5. Solar Wind Energy -- 4. Internal Energy Sources and Sinks -- 4.1. Eddy Viscosity -- 4.2. Eddy Heat Conduction -- 4.3. Latent Heat -- 4.4. Newtonian Cooling -- 4.5. Rayleigh Friction -- 4.6. Ion Drag -- 4.7. Feedback between Large-Scale Eddies and Mean Flow -- 5. Horizontal Modal Structure -- 5.1. Separation of Variables -- 5.2. Eigenvalues of Laplace’s Equations --  
505 0 |a 5.3. Gravity Waves -- 5.4. Rossby-Haurwitz Waves -- 5.5. Kelvin Waves and Yanai Waves -- 5.6. Low Frequency Waves with Positive Eigenvalues -- 5.7. Class II Waves of Wavenumber m = 0 -- 5.8. Diurnal Tides -- 5.9. Dynamo Action of Tidal Winds -- 5.10. Rossby Waves Migrating within Mean Zonal Flow -- 5.11. Influence of Zonal Mean Flow on Rossby-Haurwitz Waves -- 5.12. Solutions of Inhomogeneous Laplace Equations -- 6. Vertical Modal Structure -- 6.1. Characteristic Waves -- 6.2. Vertical Wavenumber -- 6.3. Particular Solutions -- 6.4. Boundary Conditions -- 6.5. Normal Modes -- 6.6. Height Structure of External Waves -- 6.7. Directly Driven Circulation Cells -- 6.8. Indirectly Driven Circulation Cells -- 6.9. Height Structure of Internal Waves -- 6.10. Impulsive Heat Input -- 6.11. Ray Tracing of Rossby Waves -- 6.12. Mode Conversion -- 6.13. BaroclinicInstability -- 7. Nonlinear Wave Propagation -- 7.1. Nonlinear Coupling between Rossby-Haurwitz Waves --  
505 0 |a 7.2. Analytic Solutions for Weak Coupling of Rossby-Haurwitz Waves -- 7.3. Rossby-Haurwitz Wave Coupling in Realistic Mean Flow -- 7.4. Homogeneous and Isotropic Turbulence -- 7.5. Space-Time Analysis -- 7.6. Nonlinear Normal Mode Initialization -- 7.7. Lorenz Attractor -- 7.8. Logistic Difference Equation -- 7.9. Multiple Equilibria -- 8. Tidal Waves -- 8.1. Seasonal Tides within Lower and Middle Atmosphere (m = 0) -- 8.2. Quasi-Stationary Seasonal Waves (m > 0) -- 8.3. Climatic Mean Flow -- 8.4. Seasonal Tides within Upper Atmosphere -- 8.5. Migrating Solar Diurnal Tides within Lower and Middle Atmosphere -- 8.6. Migrating Solar Diurnal Tides within Upper Atmosphere -- 8.7. Nonmigrating Solar Diurnal Tides -- 8.8. Lunar Tides -- 8.9. Electromagnetic Effects of Tidal Waves -- 8.10. Energy and Momentum Deposition of Solar Diurnal Tides -- 9. Planetary Waves -- 9.1. Extratropical Transients -- 9.2. Southern Oscillation -- 9.3. Forty-Day Oscillations --  
505 0 |a 9.4. Transients in the Tropical Middle Atmosphere -- 9.5. Fluctuations of Atmospheric Angular Momentum -- 9.6. Sudden Stratospheric Warmings -- 9.7. Thermospheric Response to Solar EUV Fluctuations -- 9.8. Thermospheric Storms -- 9.9. Solar Activity Effects within Middle and Lower Atmosphere -- 10. Epilogue -- References 
653 |a Atmospheric Science 
653 |a Atmospheric science 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Atmospheric and Oceanographic Sciences Library 
028 5 0 |a 10.1007/978-94-009-2861-9 
856 4 0 |u https://doi.org/10.1007/978-94-009-2861-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 551.5 
520 |a Prior to the space age, meteorologists rarely paid particular attention to the height regions above the tropopause. What was known about the upper atmosphere above about 100 km came essentially from ionospheric and geomagnetic research. The region in between, presently known as the middle atmosphere, was almost terra incognita above the height reachable by balloons. It was space research that allowed for the first time direct access to middle and upper atmospheric heights. About 40 years ago, Sidney Chapman coined a new word 'aeronomy' to describe the study of these two height regions. When asked about the difference between aeronomy and meteorology, he allegedly replied: 'it is the same as between astronomy and astrology' . This mild irony indicates the preferred prejudice of many ionospheric physicists and geomagneticians in those days toward meteorology as a descriptive rather than an exact science, in spite of the presence of such giants as Carl Rossby and Hans Ertel