The Practical Use of Fracture Mechanics

This book is about the use of fracture mechanics for the solution of practical problems; academic rigor is not at issue and dealt with only in as far as it improves insight and understanding; it often concerns secondary errors in engineering. Knowledge of (ignorance of) such basic input as loads and...

Full description

Bibliographic Details
Main Author: Broek, D.
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1989, 1989
Edition:1st ed. 1989
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 13.4. Features of use in fracture mechanics analysis
  • 13.5. Use of fracture mechanics
  • 13.6. Possible actions based on failure analysis
  • 13.7. Exercises
  • 14. Applications
  • 14.1. Scope
  • 14.2. Storage tank (fictitious example)
  • 14.3. Fracture arrest in ships
  • 14.4. Piping in chemical plant (fictitious example)
  • 14.5. Fatigue cracks in railroad rails
  • 14.6. Underwater pipeline
  • 14.7. Closure
  • 15. Solutions To Exercises
  • 3.10. The energy release rate
  • 3.11. The meaning of the energy criterion
  • 3.12. The rise in fracture resistance: redefinition of toughness
  • 3.13. Exercises
  • 4. Elastic-Plastic Fracture Mechanics
  • 4.1. Scope
  • 4.2. The energy criterion for plastic fracture
  • 4.3. The fracture criterion
  • 4.4. The rising fracture energy
  • 4.5. The residual strength diagram in EPFM: collapse
  • 4.6. The measurement of the toughness in EPFM
  • 4.7. The parameters of the stress-strain curve
  • 4.8. The h-functions
  • 4.9. Accuracy
  • 4.10. Historical development of J
  • 4.11. Limitations of EPFM
  • 4.12. CTOD measurements
  • 4.13. Exercises
  • 5. Crack Growth Analysis Concepts
  • 5.1. Scope
  • 5.2. The concept underlying fatigue crack growth
  • 5.3. Measurement of the rate function
  • 5.4. Rate equations
  • 5.5. Constant amplitude crack growth in a structure
  • 5.6. Load interaction: Retardation
  • 5.7. Retardation models
  • 5.8. Crack growth analysis for variable amplitude loading
  • 10.6. Use of R-curve and JR-curve
  • 10.7. Crack growth analysis
  • 10.8. Exercises
  • 11. Fracture Control
  • 11.1. Scope
  • 11.2. Fracture control options
  • 11.3. The probability of missing the crack
  • 11.4. The physics and statistics of crack detection
  • 11.5. Determining the inspection interval
  • 11.6. Fracture control plans
  • 11.7. Repairs
  • 11.8. Statistical aspects
  • 11.9. The cost of fracture and fracture control
  • 11.10. Exercises
  • 12. Damage Tolerance Substantiation
  • 12.1. Scope
  • 12.2. Objectives
  • 12.3. Analysis and damage tolerance substantiation
  • 12.4. Options to improve damage tolerance
  • 12.5. Aircraft damage tolerance requirements
  • 12.6. Other requirements
  • 12.7. Flaw assumptions
  • 12.8. Sources of error and safety factors
  • 12.9. Misconceptions
  • 12.10. Outlook
  • 12.11. Exercises
  • 13. After the Fact: Fracture Mechanics and Failure Analysis
  • 13.1. Scope
  • 13.2. The cause of service fractures
  • 13.3. Fractography
  • 8.5. A simple method for asymmetric loading cases
  • 8.6. Some easy guesses
  • 8.7. Simple solutions for holes and stress concentrations
  • 8.8. Simple solutions for irregular stress distributions
  • 8.9. Finite element analysis
  • 8.10. Simple solutions for crack arresters and multiple elements
  • 8.11. Geometry factors for elastic-plastic fracture mechanics
  • 8.12. Exercises
  • 9. Special Subjects
  • 9.1. Scope
  • 9.2. Behavior of surface flaws and corner cracks
  • 9.3. Break through: leak-before-break
  • 9.4. Fracture arrest
  • 9.5. Multiple elements, multiple cracks, changing geometry
  • 9.6. Stop holes, cold worked holes and interference fasteners
  • 9.7. Residual stresses in general
  • 9.8. Other loading modes: mixed mode loading
  • 9.9.Composites
  • 9.10. Exercises
  • 10. Analysis Procedures
  • 10.1. Scope
  • 10.2. Ingredients and critical locations
  • 10.3. Critical locations and flaw assumptions
  • 10.4. LEFM versus EPFM
  • 10.5. Residual strength analysis
  • 1. Introduction
  • 1.1. Fracture control
  • 1.2. The two objectives of damage tolerance analysis
  • 1.3. Crack growth and fracture
  • 1.4. Damage tolerance and fracture mechanics
  • 1.5. The need for analysis: purpose of this book
  • 1.6. Exercises
  • 2. Effects of Cracks and Notches: Collapse
  • 2.1. Scope
  • 2.2. An interrupted load path
  • 2.3. Stress concentration factor
  • 2.4. State of stress at a stress concentration
  • 2.5. Yielding at a notch
  • 2.6. Plastic collapse at a notch
  • 2.7. Fracture at notches: brittle behavior
  • 2.8. Measurement of collapse strength
  • 2.9. Exercises
  • 3. Linear Elastic Fracture Mechanics
  • 3.1. Scope
  • 3.2. Stress at a crack tip
  • 3.3. General form of the stress intensity factor
  • 3.4. Toughness
  • 3.5. Plastic zone and stresses in plane stress and plane strain
  • 3.6. Thickness dependence of toughness
  • 3.7. Measurement of toughness
  • 3.8. Competition with plastic collapse
  • 3.9. The energy criterion
  • 5.9. Parameters affecting fatigue crack growth rates
  • 5.10. Stress corrosion cracking
  • 5.11. Exercises
  • 6. Load Spectra and Stress Histories
  • 6.1. Scope
  • 6.2. Types of stress histories
  • 6.3. Obtaining load spectra
  • 6.4. Exceedance diagram
  • 6.5. Stress history generation
  • 6.6. Clipping
  • 6.7. Truncation
  • 6.8. Manipulation of stress history
  • 6.9. Environmental effects
  • 6.10. Standard spectra
  • 6.11. Exercises
  • 7. Data Interpretation and Use
  • 7.1. Scope
  • 7.2. Plane strain fracture toughness
  • 7.3. Plane stress and transitional toughness, R-curve
  • 7.4. Toughness in terms of J and JR
  • 7.5. Estimates of toughness
  • 7.6. General remarks on fatigue rate data
  • 7.7. Fitting the da/dN data
  • 7.8. Dealing with scatter in rate data
  • 7.9. Accounting for the environmental effect
  • 7.10. Obtaining retardation parameters
  • 7.11. Exercises
  • 8. Geometry Factors
  • 8.1. Scope
  • 8.2. The reference stress
  • 8.3. Compounding
  • 8.4. Superposition