Logical Structures for Representation of Knowledge and Uncertainty

To answer questions concerning previously supplied information the book uses a truth table or 'chain set' logic which combines probabilities with truth values (= possibilities of fuzzy set theory). Answers to questions can be 1 (yes); 0 (no); m (a fraction in the case of uncertain informat...

Full description

Main Author: Hisdal, Ellen
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Heidelberg Physica-Verlag HD 1998, 1998
Edition:1st ed. 1998
Series:Studies in Fuzziness and Soft Computing
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Summary:To answer questions concerning previously supplied information the book uses a truth table or 'chain set' logic which combines probabilities with truth values (= possibilities of fuzzy set theory). Answers to questions can be 1 (yes); 0 (no); m (a fraction in the case of uncertain information); 0m, m1 or 0m1 (in the case of 'ignorance' or insufficient information). Ignorance (concerning the values of a probability distribution) is differentiated from uncertainty (concerning the occurrence of an outcome). An IF THEN statement is interpreted as specifying a conditional probability value. No predicate calculus is needed in this probability logic which is built on top of a yes-no logic. Quantification sentences are represented as IF THEN sentences with variables. No 'forall' and 'exist' symbols are needed. This simplifies the processing of information. Strange results of first order logic are more reasonable in the chain set logic. E.g., (p->q) AND (p->NOTq), p->NOT p, (p->q)->(p->NOT q), (p->q)- >NOT(p->q), are contradictory or inconsistent statements only in the chain set logic. Depending on the context, two different rules for the updating of probabilities are shown to exist. The first rule applies to the updating of IF THEN information by new IF THEN information. The second rule applies to other cases, including modus ponens updating. It corresponds to the truth table of the AND connective in propositional calculus. Many examples of inferences are given throughout the book
Physical Description:XXIV, 420 p online resource
ISBN:9783790818871