Evolving Rule-Based Models A Tool for Design of Flexible Adaptive Systems

The objects of modelling and control change due to dynamical characteristics, fault development or simply ageing. There is a need to up-date models inheriting useful structure and parameter information. The book gives an original solution to this problem with a number of examples. It treats an origi...

Full description

Bibliographic Details
Main Author: Angelov, Plamen P.
Format: eBook
Language:English
Published: Heidelberg Physica 2002, 2002
Edition:1st ed. 2002
Series:Studies in Fuzziness and Soft Computing
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02673nmm a2200373 u 4500
001 EB000709746
003 EBX01000000000000000562828
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783790817942 
100 1 |a Angelov, Plamen P. 
245 0 0 |a Evolving Rule-Based Models  |h Elektronische Ressource  |b A Tool for Design of Flexible Adaptive Systems  |c by Plamen P. Angelov 
250 |a 1st ed. 2002 
260 |a Heidelberg  |b Physica  |c 2002, 2002 
300 |a XIII, 214 p  |b online resource 
505 0 |a 1 Introduction -- I System Modelling: Basic Principles -- 2 Conventional Models -- 3 Flexible Models -- II Flexible Models Identification -- 4 Non-linear Approach to (Off-line) Identification of Flexible Models -- 5 Quasi-linear Approach to FRB Models (Off-line) Identification -- 6 Intelligent and Smart Adaptive Systems -- 7 On-line Identification of Flexible TSK-type Models -- III Engineering Applications -- 8 Modelling Indoor Climate Control Systems -- 9 On-line Modelling of Fermentation Processes -- 10 Intelligent Risk Assessment -- 11 Conclusions -- References 
653 |a Mathematical logic 
653 |a Applied Dynamical Systems 
653 |a Artificial Intelligence 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a System theory 
653 |a Nonlinear theories 
653 |a Artificial intelligence 
653 |a Mathematical Logic and Foundations 
653 |a Dynamics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Studies in Fuzziness and Soft Computing 
028 5 0 |a 10.1007/978-3-7908-1794-2 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1794-2?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 511.3 
520 |a The objects of modelling and control change due to dynamical characteristics, fault development or simply ageing. There is a need to up-date models inheriting useful structure and parameter information. The book gives an original solution to this problem with a number of examples. It treats an original approach to on-line adaptation of rule-based models and systems described by such models. It combines the benefits of fuzzy rule-based models suitable for the description of highly complex systems with the original recursive, non iterative technique of model evolution without necessarily using genetic algorithms, thus avoiding computational burden making possible real-time industrial applications. Potential applications range from autonomous systems, on-line fault detection and diagnosis, performance analysis to evolving (self-learning) intelligent decision support systems