Vibrations and Stability Advanced Theory, Analysis, and Tools

This book ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations, with tools necessary for understanding and analyzing more complex dynamical phenomena that can be encountered in eng...

Full description

Bibliographic Details
Main Author: Thomsen, Jon Juel
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2003, 2003
Edition:2nd ed. 2003
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • C.2.2 Mathieu’s Equation:Stability of the Zero-Solution
  • Appendix D — Vibration Modes and Frequencies for Structural Elements
  • D.1 Rods
  • D.1.1 Longitudinal Vibrations
  • D.1.2 Torsional Vibrations
  • D.2 Beams
  • D.2.1 Bernoulli-Euler Theory
  • D.2.2 Timoshenko Theory
  • D.3 Rings
  • D.3.1 In-Plane Bending
  • D.3.2 Out-of-Plane Bending
  • D.3.3 Extension
  • D.4 Membranes
  • D.4.1 Rectangular Membrane
  • D.4.2 Circular Membrane
  • D.5 Plates
  • D.5.1 Rectangular Plate
  • D.5.2 Circular Plate
  • D.6 Other Structures
  • Appendix E — Properties of Engineering Materials
  • E.1 Friction and Thermal Expansion Coefficients
  • E.2 Density and Elasticity Constants
  • References
  • B.2.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes
  • B.2.3 Discrete Models
  • B.2.4 Local Bifurcation Analysis for the Unloaded System
  • B.2.5 Quantitative Analysis of the Loaded System
  • B.2.6 Numerical Analysis
  • B.2.7 Conclusions
  • B.3 Dynamics of a Microbeam
  • B.3.1 System Description
  • B.3.2 Mathematical Model
  • B.3.3 Eigenvalue Problem, Natural Frequencies and Mode Shapes
  • B.3.4 Discrete Models, Mode Shape Expansion
  • B.3.5 Local Bifurcation Analysis for the Statically Loaded System
  • B.3.6 Quantitative Analysis of the Loaded System
  • B.3.7 Numerical Analysis
  • B.3.8 Conclusions
  • Appendix C — Mathematical Formulas
  • C.1 Formulas Typically Used in Perturbation analysis
  • C.1.1 Complex Numbers
  • C.1.2 Powers of Two-Term Sums
  • C.1.3 Dirac’s Delta Function (?)
  • C.1.4 Averaging Integrals
  • C.1.5 Fourier Series of a Periodic Function
  • C.2Formulas for Stability Analysis
  • C.2.1 The Routh-Hurwitz Criterion
  • 1 Vibration Basics
  • 2 Eigenvalue Problems of Vibrations And Stability
  • 3 Nonlinear Vibrations: Classical Local Theory
  • 4 Nonlinear Multiple-DOF Systems: Local Analysis
  • 5 Bifurcations
  • 6 Chaotic Vibrations
  • 7 Special Effects of High-Frequency Excitation
  • Appendix A — Performing Numerical Simulations
  • A.1 Solving Differential Equations
  • A.2 Computing Chaos-Related Quantities
  • A.3 Interfacing with the ODE-Solver
  • A.4 Locating Software on the Internet
  • Appendix B — Major Exercises
  • B.1 Tension Control of Rotating Shafts
  • B.1.1 Mathematical Model
  • B.1.2 Eigenvalue Problem, Natural Frequencies and Mode Shapes
  • B.1.3 Discretisations, Choice of Control Law
  • B.1.5 Quantitative Analysis of the Controlled System
  • B.1.6 Using a Dither Signal for Open-Loop Control
  • B.1.7 Numerical Analysis of the Controlled System
  • B.1.8 Conclusions
  • B.2 Vibrations of a Spring-Tensioned Beam
  • B.2.1 Mathematical Model