Epilepsy as a Dynamic Disease

A "brain defibrillator" may be closer than we think. An epileptic seizure involves a paroxysmal change in the activity of millions of neurons. Feedback control of seizures would require an implantable device that could predict seizure occurrence and then deliver a stimulus to abort it. To...

Full description

Bibliographic Details
Other Authors: Milton, John (Editor), Jung, Peter (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2003, 2003
Edition:1st ed. 2003
Series:Biological and Medical Physics, Biomedical Engineering
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03137nmm a2200397 u 4500
001 EB000686954
003 EBX01000000000000000540036
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783662050484 
100 1 |a Milton, John  |e [editor] 
245 0 0 |a Epilepsy as a Dynamic Disease  |h Elektronische Ressource  |c edited by John Milton, Peter Jung 
250 |a 1st ed. 2003 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2003, 2003 
300 |a XXXII, 417 p  |b online resource 
505 0 |a 1 Medically Intractable Epilepsy -- 2 Insights into Seizure Propagation from Axonal Conduction Times -- 3 Dynamic Epileptic Systems Versus Static Epileptic Foci? -- 4 Neuroglia, the Other Brain Cells -- 5 The Electroencephalogram (EEG): A Measure of Neural Synchrony -- 6 Electrocorticographic Coherence Patterns of Epileptic Seizures -- 7 Synchronization of Synaptically-Coupled Neural Oscillators -- 8 Controling Neural Synchrony with Periodic and Aperiodic Stimuli -- 9 Modeling Pattern Formation in Excitable Media: The Legacy of Norbert Wiener -- 10 Are Cardiac Waves Relevant to Epileptic Wave Propagation? -- 11 Pattern Formation in the Microbial World: Dictyostelium Discoideum -- 12 Predicting Epileptic Seizures -- 13 Comparison of Methods for Seizure Detection -- 14 Direct Deep Brain Stimulation: First Steps Towards the Feedback Control of Seizures -- 15 Seizure Control Using Feedback and Electric Fields -- 16 Aborting Seizures with a Single Stimulus: The Case for Multistability -- 17 Unstable Periodic Orbits (UPOs) and Chaos Control in Neural Systems -- 18 Prospects for Building a Therapeutic Cortical Stimulator -- 19 Brain Defibrillators: Synopsis, Problems and Future Directions -- Color Plates -- References 
653 |a Neuroscience 
653 |a Spectrum analysis 
653 |a Neurosciences 
653 |a Neurology  
653 |a Mathematical and Computational Biology 
653 |a Condensed Matter Physics 
653 |a Neurology 
653 |a Spectroscopy 
653 |a Biomathematics 
653 |a Biophysics 
653 |a Condensed matter 
700 1 |a Jung, Peter  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Biological and Medical Physics, Biomedical Engineering 
028 5 0 |a 10.1007/978-3-662-05048-4 
856 4 0 |u https://doi.org/10.1007/978-3-662-05048-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 571.4 
520 |a A "brain defibrillator" may be closer than we think. An epileptic seizure involves a paroxysmal change in the activity of millions of neurons. Feedback control of seizures would require an implantable device that could predict seizure occurrence and then deliver a stimulus to abort it. To examine the feasibility of building such a device, this text brings together experts in epilepsy, bio-engineering, and dynamical systems theory. Topics include the development of epileptic systems, seizure prediction, neural synchronization, wave phenomena in excitable media, and the control of complex neural dynamics using brief electrical stimuli