Computer Simulation of Dynamic Phenomena

Preferred finite difference schemes in one, two, and three space dimensions are described for solving the three fundamental equations of mechanics (conservation of mass, conservation of momentum, and conservation of energy). Models of the behavior of materials provide the closure to the three fundam...

Full description

Bibliographic Details
Main Author: Wilkins, Mark L.
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1999, 1999
Edition:1st ed. 1999
Series:Scientific Computation
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03374nmm a2200409 u 4500
001 EB000686449
003 EBX01000000000000000539531
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783662038857 
100 1 |a Wilkins, Mark L. 
245 0 0 |a Computer Simulation of Dynamic Phenomena  |h Elektronische Ressource  |c by Mark L. Wilkins 
250 |a 1st ed. 1999 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1999, 1999 
300 |a XVI, 246 p  |b online resource 
505 0 |a 1. Elements of Fluid Mechanics -- 2. Numerical Techniques -- 3. Modeling the Behavior of Materials -- 4. Two-Dimensional Elastic—Plastic Flow -- 5. Sliding Interfaces in Two Dimensions -- 6. Elastic—Plastic Flow in Three Space Dimensions -- 7. Sliding Surfaces in Three Dimensions -- 8. Magnetohydrodynamics of HEMP -- Appendices -- A. Effect of a Second Shock on the Principal Hugoniot -- B. Finite Difference Program for One Space Dimension and Time -- B.1 Fundamental Equations -- B.2 Finite Difference Equations -- B.3 Boundary Conditions -- B.4 Opening and Closing Voids -- C. A Method for Determining the Plastic Work Hardening Function -- C.1 Application to 6061-T6 Aluminum -- D. Detonation of a High Explosive for a ?-Law Equation of State -- E. Magnetic Flux Calculation -- F. Thermal Diffusion Calculation -- References 
653 |a Classical and Continuum Physics 
653 |a Engineering mathematics 
653 |a Condensed Matter Physics 
653 |a Computer simulation 
653 |a Computer Modelling 
653 |a Mathematics / Data processing 
653 |a Computational Science and Engineering 
653 |a Mathematical physics 
653 |a Physics 
653 |a Engineering / Data processing 
653 |a Theoretical, Mathematical and Computational Physics 
653 |a Condensed matter 
653 |a Mathematical and Computational Engineering Applications 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Scientific Computation 
028 5 0 |a 10.1007/978-3-662-03885-7 
856 4 0 |u https://doi.org/10.1007/978-3-662-03885-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.1 
520 |a Preferred finite difference schemes in one, two, and three space dimensions are described for solving the three fundamental equations of mechanics (conservation of mass, conservation of momentum, and conservation of energy). Models of the behavior of materials provide the closure to the three fundamentals equations for applications to problems in compressible fluid flow and solid mechanics. The use of Lagrange coordinates permits the history of mass elements to be followed where the integrated effects of plasticity and external loads change the material physical properties. Models of fracture, including size effects, are described. The detonation of explosives is modelled following the Chapman--Jouget theory with equations of state for the detonation products derived from experiments. An equation-of-state library for solids and explosives is presented with theoretical models that incorporate experimental data from the open literature. The versatility of the simulation programs is demonstrated by applications to the calculations of surface waves from an earthquake to the shock waves from supersonic flow and other examples