Self-Trapped Excitons

In crystals as diverse as sodium chloride, silicon dioxide, sold xenon, pyrene, arsenic triselenide, and silver chloride, the fundamental electronicexcitation (exciton) is localized within its own lattice distortion field very shortly after its creation. This book discusses the structure if the self...

Full description

Bibliographic Details
Main Authors: Song, K.S., Williams, Richard T. (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1993, 1993
Edition:1st ed. 1993
Series:Springer Series in Solid-State Sciences
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 6.1 Self-Trapped Excitons as Nascent Defect Pairs
  • 6.2 Thermally Activated Conversion
  • 6.3 Dynamic Conversion Process
  • 6.4 Stabilization of the Primary Defects
  • 6.5 Defects and Desorption at Surfaces
  • 7 Silicon Dioxide
  • 7.1 Material Properties
  • 7.2 Theory of Self-Trapped Excitons
  • 7.3 Experiments on Crystalline SiO2
  • 7.4 Experiments on Amorphous SiO2
  • 7.5 Self-Trapped Holes in SiO2
  • 7.6 Defect Generation Processes
  • 8 Simple Organic Molecular Crystals
  • 8.1 Material Properties
  • 8.2 Pyrene
  • 8.3 Anthracene
  • 8.4 Perylene
  • 9 Silver Halides
  • 9.1 Electronic Structure and Exciton Spectra
  • 9.2 Self-Trapped Hole in AgCl
  • 9.3 Self-Trapped Exciton in AgCl
  • 10 As2Se3 and Other Chalcogenides
  • 10.1 Structure and Electronic States of As2Se3
  • 10.2 The Self-Trapped Exciton
  • 10.3 Spectroscopy
  • 10.4 STE to Defect Conversion in Amorphous Chalcogenides
  • 10.5 Spectroscopy in Crystalline Trigonal Selenium
  • 1 Introduction
  • 1.1 Excitons
  • 1.2 Charge Carriers and Excitons in a Deformable Lattice
  • 1.3 Scope of this Monograph
  • 2 Investigation of Self-Trapped Excitons from a Defect Perspective
  • 2.1 Atomistic Structure of Self-Trapped Carriers
  • 2.2 Self-Trapped Excitons
  • 2.3 Experimental Methods
  • 2.4 Theoretical Methods
  • 3 Condensed Rare Gases
  • 3.1 Electronic Structure
  • 3.2 Spectroscopy
  • 3.3 Theory of the Self-Trapped Exciton in Rare Gas Solids
  • 3.4 Desorption from the Surface
  • 4 Alkaline Earth Fluorides
  • 4.1 Electronic Structure
  • 4.2 Lattice Defects
  • 4.3 Theory of Self-Trapped Excitons in Fluorite Crystals
  • 4.4 Spectroscopy
  • 4.5 Lattice Defect Formation
  • 5 Alkali Halides
  • 5.1 Material Properties
  • 5.2 Theory of Self-Trapped Exciton Structure
  • 5.3 Luminescence
  • 5.4 Magneto-Optics, ODMR, and ODENDOR
  • 5.5 Excited-State Absorption
  • 5.6 Resonant Raman Scattering
  • 5.7 Dynamics
  • 5.8 Kinetics
  • 6 Defect Formation in Alkali Halide Crystals
  • 11 Other Materials, Extrinsic Self-Trapping, and Low-Dimensional Systems
  • 11.1 Ammonium Halides
  • 11.2 KMgF3 and Related Perovskites
  • 11.3 Alkaline-Earth Fluorohalides
  • 11.4 Alkali Silver Halides
  • 11.5 LiYF4
  • 11.6 Extrinsic Self-Trapping in ZnSe1?xTex
  • 11.7 Quasi-One-Dimensional Systems
  • References