Current Distributions and Electrode Shape Changes in Electrochemical Systems

Bibliographic Details
Main Author: Deconinck, Johan
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1992, 1992
Edition:1st ed. 1992
Series:Lecture Notes in Engineering
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03769nmm a2200361 u 4500
001 EB000677088
003 EBX01000000000000000530170
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642847165 
100 1 |a Deconinck, Johan 
245 0 0 |a Current Distributions and Electrode Shape Changes in Electrochemical Systems  |h Elektronische Ressource  |c by Johan Deconinck 
250 |a 1st ed. 1992 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1992, 1992 
300 |a XV, 281 p. 8 illus  |b online resource 
505 0 |a 1. The Current Distribution in Electro-Chemical Systems -- 1.1. Introduction -- 1.2. The electrode-electrolyte interphase -- 1.3. Transport equations in dilute solutions -- 1.4. Solution of the transport equations in dilute solutions -- 1.5. The boundary conditions of the potential model -- 1.6. Types of current distributions -- 1.7. The Wagner number -- 1.8. Electrode shape change -- 1.9. Conclusion -- 2. Solution of the Potential Model -- 2.1. Introduction -- 2.2. Hypotheses and definitions -- 2.3. Weighted residual statements for the Laplace equation -- 2.4. Solution of current distributions with trial functions satisfying the field equations -- 2.5. Solution of current distributions with trial functions not satisfying the field equations -- 2.6. Solution of current distributions based on weight functions satisfying the field equation -- 2.7. The physical interpretation of the integral equation -- 2.8. The outer normal convention. -- 2.9. Indirect and regular boundary methods --  
505 0 |a 2.10. Comparison of the treated weighted residual methods -- 2.11. Solution of current distributions by electric simulation -- 2.12. Conclusion -- 3. The Boundary Element Method to Solve Current Distributions -- 3.1. Introduction -- 3.2. Concretization of the boundary element method -- 3.3. The overvoltage equations -- 3.4. Solution of the non-linear system of equations -- 3.5. Examples -- 3.6. Copper electrorefining: numerical and experimental results -- 3.7. Conclusion -- 4. Electrode Shape Change -- 4.1. Introduction -- 4.2. The discretization with respect to time -- 4.3. The electrode shape change algorithm -- 4.4. Examples -- 4.5. Electrodeposition and electrode dissolution in copper electrorefining. Numerical and experimental results -- 4.6. Conclusion -- 5. General Conclusion -- References -- Appendices -- A.1.1 Primary current distribution along a free cathode in parallel with an anode and perpendicular to an insulating boundary --  
505 0 |a A.1.2 Primary current distribution along an L-shaped cathode -- A.1.3 Primary current distribution along a cathode being in line with an insulating boundary -- A.2 Solution of the potential model using trial functions satisfying the field equation: example -- A.3.1 Analytic integration of integrals involved by the two-dimensional boundary element method using straight elements -- A.3.2 Evaluation of integrals involved by the boundary element method used to solve axisymmetric potential problems -- A.4 The global Newton convergence of the potential problem with non-linear boundary conditions 
653 |a Applied mathematics 
653 |a Industrial Chemistry/Chemical Engineering 
653 |a Chemical engineering 
653 |a Engineering mathematics 
653 |a Electrochemistry 
653 |a Electrical engineering 
653 |a Mathematical and Computational Engineering 
653 |a Electrochemistry 
653 |a Electrical Engineering 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Lecture Notes in Engineering 
856 4 0 |u https://doi.org/10.1007/978-3-642-84716-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 541.37