Quantum Optics

Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past twenty years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light...

Full description

Bibliographic Details
Main Authors: Walls, D.F., Milburn, G.J. (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1994, 1994
Edition:1st ed. 1994
Series:Springer Study Edition
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 06280nmm a2200445 u 4500
001 EB000674792
003 EBX01000000000000000527874
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642795046 
100 1 |a Walls, D.F. 
245 0 0 |a Quantum Optics  |h Elektronische Ressource  |c by D.F. Walls, G.J. Milburn 
250 |a 1st ed. 1994 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1994, 1994 
300 |a XII, 351 p. 14 illus  |b online resource 
505 0 |a 16.3 Quantum Measurement Theory -- 16.4 Examples of Pointer Observables -- 16.5 Model of a Measurement -- Exercises -- 17. Atomic Optics -- 17.1 Young’s Interference with Path Detectors -- 17.2 Atomic Diffraction by a Standing Light Wave -- 17.3 Optical Stern-Gerlach Effect -- 17.4 Quantum Non-Demolition Measurement of the Photon Number by Atomic Beam Deflection -- 17.5 Measurement of Atomic Position -- Exercises -- 17.A Appendix -- References 
505 0 |a 12.1 Master Equation -- 12.2 Photon Statistics -- 12.3 Laser Linewidth -- 12.4 Regularly Pumped Laser -- 12. A Appendix: Derivation of the Single-Atom Increment -- Exercises -- 13. Intracavity Atomic Systems -- 13.1 Optical Bistability -- 13.2 Nondegenerate Four Wave Mixing -- 13.3 Experimental Results -- Exercises -- 14. Bells Inequalities in Quantum Optics -- 14.1 The Einstein-Podolsky-Rosen (EPR) Argument -- 14.2 Bell Inequalities and the Aspect Experiment -- 14.3 Violations of Bell’s Inequalities Using a Parametric Amplifier Source -- 14.4 One-Photon Interference -- Exercises -- 15. Quantum Nondemolition Measurements -- 15.1 Concept of a QND measurement -- 15.2 Back Action Evasion -- 15.3 Criteria for a QND Measurement -- 15.4 The BeamSplitter -- 15.5 Ideal Quadrature QND Measurements -- 15.6 Experimental Realisation -- 15.7 A Photon Number QND Scheme -- Exercises -- 16. Quantum Coherence and Measurement Theory -- 16.1 Quantum Coherence -- 16.2 The Effect of Fluctuations --  
505 0 |a 5.1 Single-Mode Quantum Statistics -- 5.2 Two-Mode Quantum Correlations -- 5.3 Quantum Limits to Amplification -- 5.4 Amplitude Squeezed State with Poisson Photon Number Statistics -- Problems -- 6. Stochastic Methods -- 6.1 Master Equation -- 6.2 Equivalent c-Number Equations -- 6.3 Stochastic Differential Equations -- 6.4 Linear Processes with Constant Diffusion -- 6.5 Two Time Correlation Functions in Quantum Markov Processes -- 6.6 Application to Systems with a P Representation -- Exercises -- 7. Input-Output Formulation of Optical Cavities -- 7.1 Cavity Modes -- 7.2 Linear Systems -- 7.3 Two-Sided Cavity -- 7.4 Two Time Correlation Functions -- 7.5 Spectrum of Squeezing -- 7.6 Parametric Oscillator -- 7.7 Squeezing in the Total Field -- 7.8 Fokker-Planck Equation -- Exercises -- 8. Generation and Applications of Squeezed Light -- 8.1 Parametric Oscillation and Second Harmonic Generation -- 8.2 Twin Beam Generation and Intensity Correlations --  
505 0 |a 8.3 Applications of Squeezed Light -- Exercises -- 9. Nonlinear Quantum Dissipative Systems -- 9.1 Optical Parametric Oscillator: Complex P Function -- 9.2 Optical Parametric Oscillator: Positive P Function -- 9.3 Quantum Tunnelling Time -- 9.4 Dispersive Optical Bistability -- 9.5 Comment on the Use of the Q and Wigner Representations -- Exercises -- 9.A Appendix -- 10. Interaction of Radiation with Atoms -- 10.1 Quantization of the Electron Wave Field -- 10.2 Interaction Between the Radiation Field and the Electron Wave Field -- 10.3 Interaction of a Two-Level Atom with a Single Mode Field -- 10.4 Quantum Collapses and Revivals -- 10.5 Spontaneous Decay of a Two-Level Atom -- 10.6 Decay of a Two-Level Atom in a Squeezed Vacuum -- 10.7 Phase Decay in a Two-Level System -- Exercises -- 11. Resonance Fluorescence -- 11.1 Master Equation -- 11.2 Spectrum of the Fluorescent Light -- 11.3 Photon Correlations -- 11.4 Squeezing Spectrum -- Exercises -- 12. Quantum Theory of the Laser --  
505 0 |a 1. Introduction -- 2. Quantisation of the Electromagnetic Field -- 2.1 Field Quantisation -- 2.2 Fock or Number States -- 2.3 Coherent States -- 2.4 Squeezed States -- 2.5 Two-Photon Coherent States -- 2.6 Variance in the Electric Field -- 2.7 Multimode Squeezed States -- 2.8 Phase Properties of the Field -- Exercises -- 3. Coherence Properties of the Electromagnetic Field -- 3.1 Field-Correlation Functions -- 3.2 Properties of the Correlation Functions -- 3.3 Correlation Functions and Optical Coherence -- 3.4 First-Order Optical Coherence -- 3.5 Coherent Field -- 3.6 Photon Correlation Measurements -- 3.7 Quantum Mechanical Fields -- 3.8 Phase-Dependent Correlation Functions -- 3.9 Photon Counting Measurements -- 3.10 Quantum Mechanical Photon Count Distribution -- Exercises -- 4. Representations of the Electromagnetic Field -- 4.1 Expansion in Number States -- 4.2 Expansion in Coherent States -- Exercises -- 5. Quantum Phenomena in Simple Systems in Nonlinear Optics --  
653 |a Quantum Physics 
653 |a Quantum Optics 
653 |a Laser 
653 |a Spectrum analysis 
653 |a Spintronics 
653 |a Condensed Matter Physics 
653 |a Spectroscopy 
653 |a Quantum physics 
653 |a Lasers 
653 |a Quantum optics 
653 |a Condensed matter 
700 1 |a Milburn, G.J.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Springer Study Edition 
028 5 0 |a 10.1007/978-3-642-79504-6 
856 4 0 |u https://doi.org/10.1007/978-3-642-79504-6?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.366 
520 |a Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past twenty years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook