Computational Materials Science From Ab Initio to Monte Carlo Methods

This book introduces modern techniques based on computer simulation to study materials science. It starts from first principles calculations that enable the physical and chemical properties to be revealed by solving a many-body Schroedinger equation with Coulomb forces. For the exchange-correlation...

Full description

Bibliographic Details
Main Authors: Ohno, Kaoru, Esfarjani, Keivan (Author), Kawazoe, Yoshiyuki (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1999, 1999
Edition:1st ed. 1999
Series:Springer Series in Solid-State Sciences
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03787nmm a2200397 u 4500
001 EB000667212
003 EBX01000000000000000520294
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642598593 
100 1 |a Ohno, Kaoru 
245 0 0 |a Computational Materials Science  |h Elektronische Ressource  |b From Ab Initio to Monte Carlo Methods  |c by Kaoru Ohno, Keivan Esfarjani, Yoshiyuki Kawazoe 
250 |a 1st ed. 1999 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1999, 1999 
300 |a X, 329 p  |b online resource 
505 0 |a 1. Introduction -- 1.1 Computer Simulation as a Tool for Materials Science -- 1.2 Modeling of Natural Phenomena -- 2. Ab Initio Methods -- 2.1 Introduction -- 2.2 Electronic States of Many-Particle Systems -- 2.3 Perturbation and Linear Response -- 2.4 Ab Initio Molecular Dynamics -- 2.5 Applications -- 2.6 Beyond the Born-Oppenheimer Approximation -- 2.7 Electron Correlations Beyond the LDA -- References -- 3. Tight-Binding Methods -- 3.1 Introduction -- 3.2 Tight-Binding Formalism -- 3.3 Methods to Solve the Schrödinger Equation for Large Systems -- 3.4 Self-Consistent Tight-Binding Formalism -- 3.5 Applications to Fullerenes, Silicon and Transition-Metal Clusters -- References -- 4. Empirical Methods and Coarse-Graining -- 4.1 Introduction -- 4.2 Reduction to Classical Potentials -- 4.3 The Connolly-Williams Approximation -- 4.4 Potential Renormalization -- References -- 5. Monte Carlo Methods -- 5.1 Introduction -- 5.2 Basis of the Monte Carlo Method -- 5.3 Algorithms for Monte Carlo Simulation -- 5.4 Applications -- References -- 6. Quantum Monte Carlo (QMC) Methods -- 6.1 Introduction -- A. Molecular Dynamics and Mechanical Properties -- A.l Time Evolution of Atomic Positions -- A.2 Acceleration of Force Calculations -- A.2.1 Particle-Mesh Method -- A.2.2 The Greengard-Rockhlin Method -- References -- B. Vibrational Properties -- References -- C. Calculation of the Ewald Sum -- References -- D. Optimization Methods Used in Materials Science -- D.l Conjugate-Gradient Minimization -- D.2 Broyden’s Method -- D.3 SA and GA as Global Optimization Methods -- D.3.1 Simulated Annealing (SA) -- D.3.2 Genetic Algorithm (GA) -- References 
653 |a Materials Science 
653 |a Condensed Matter Physics 
653 |a Computer simulation 
653 |a Computer Modelling 
653 |a Materials science 
653 |a Mathematical physics 
653 |a Materials / Analysis 
653 |a Characterization and Analytical Technique 
653 |a Theoretical, Mathematical and Computational Physics 
653 |a Condensed matter 
700 1 |a Esfarjani, Keivan  |e [author] 
700 1 |a Kawazoe, Yoshiyuki  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Springer Series in Solid-State Sciences 
028 5 0 |a 10.1007/978-3-642-59859-3 
856 4 0 |u https://doi.org/10.1007/978-3-642-59859-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.1 
520 |a This book introduces modern techniques based on computer simulation to study materials science. It starts from first principles calculations that enable the physical and chemical properties to be revealed by solving a many-body Schroedinger equation with Coulomb forces. For the exchange-correlation term, the local density approximation is usually applied. After the introduction of the first principles treatment, tight-binding and classical potential methods are briefly introduced to indicate how one can increase the number of atoms in the system. In the second half of the book, Monte Carlo simulation is discussed in detail. Readers can gain sufficient knowledge to begin theoretical studies in modern materials research