Classical Potential Theory and Its Probabilistic Counterpart

From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and pap...

Full description

Main Author: Doob, Joseph L.
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2001, 2001
Edition:1st ed. 2001
Series:Classics in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 05820nmm a2200361 u 4500
001 EB000665037
003 EBX01000000000000000518119
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783642565731 
100 1 |a Doob, Joseph L. 
245 0 0 |a Classical Potential Theory and Its Probabilistic Counterpart  |h Elektronische Ressource  |c by Joseph L. Doob 
250 |a 1st ed. 2001 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2001, 2001 
300 |a L, 1551 p  |b online resource 
505 0 |a I Introduction to the Mathematical Background of Classical Potential Theory -- II Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions -- III Infima of Families of Superharmonic Functions -- IV Potentials on Special Open Sets -- V Polar Sets and Their Applications -- VI The Fundamental Convergence Theorem and the Reduction Operation -- VII Green Functions -- VIII The Dirichlet Problem for Relative Harmonic Functions -- IX Lattices and Related Classes of Functions -- X The Sweeping Operation -- XI The Fine Topology -- XII The Martin Boundary -- XIII Classical Energy and Capacity -- XIV One-Dimensional Potential Theory -- XV Parabolic Potential Theory: Basic Facts -- XVI Subparabolic, Superparabolic, and Parabolic Functions on a Slab -- XVII Parabolic Potential Theory (Continued) -- XVIII The Parabolic Dirichlet Problem, Sweeping, and Exceptional Sets -- XIX The Martin Boundary in the Parabolic Context -- I Fundamental Concepts of Probability --  
505 0 |a II Optional Times and Associated Concepts -- III Elements of Martingale Theory -- IV Basic Properties of Continuous Parameter Supermartingales -- V Lattices and Related Classes of Stochastic Processes -- VI Markov Processes -- VII Brownian Motion -- VIII The Itô Integral -- IX Brownian Motion and Martingale Theory -- X Conditional Brownian Motion -- I Lattices in Classical Potential Theory and Martingale Theory -- II Brownian Motion and the PWB Method -- III Brownian Motion on the Martin Space -- Appendixes -- Appendix I -- Analytic Sets -- 1. Pavings and Algebras of Sets -- 2. Suslin Schemes -- 3. Sets Analytic over a Product Paving -- 4. Analytic Extensions versus ? Algebra Extensions of Pavings -- 7. Projections of Sets in Product Pavings -- 8. Extension of a Measurability Concept to the Analytic Operation Context -- 10. Polish Spaces -- 11. The Baire Null Space -- 12. Analytic Sets -- 13. Analytic Subsets of Polish Spaces -- Appendix II -- Capacity Theory --  
505 0 |a 1. Choquet Capacities -- 2. Sierpinski Lemma -- 3. Choquet Capacity Theorem -- 4. Lusin’s Theorem -- 5. A Fundamental Example of a Choquet Capacity -- 6. Strongly Subadditive Set Functions -- 7. Generation of a Choquet Capacity by a Positive Strongly Subadditive Set Function -- 8. Topological Precapacities -- 9. Universally Measurable Sets -- Appendix III -- Lattice Theory -- 1. Introduction -- 2. Lattice Definitions -- 3. Cones -- 4. The Specific Order Generated by a Cone -- 5. Vector Lattices -- 6. Decomposition Property of a Vector Lattice -- 7. Orthogonality in a Vector Lattice -- 8. Bands in a Vector Lattice -- 9. Projections on Bands -- 10. The Orthogonal Complement of a Set -- 11. The Band Generated by a Single Element -- 12. Order Convergence -- 13. Order Convergence on a Linearly Ordered Set -- Appendix IV -- Lattice Theoretic Concepts in Measure Theory -- 1. Lattices of Set Algebras -- 2. Measurable Spaces and Measurable Functions -- 3. Composition of Functions --  
505 0 |a 3. Choquet Topological Lemma -- Historical Notes -- 1 -- 2 -- 3 -- Appendixes -- Notation Index 
505 0 |a 4. The Measure Lattice of a Measurable Space -- 5. The ? Finite Measure Lattice of a Measurable Space (Notation of Section 4) -- 6. The Hahn and Jordan Decompositions -- 8. Absolute Continuity and Singularity -- 9. Lattices of Measurable Functions on a Measure Space -- 10.Order Convergence of Families of Measurable Functions -- 11. Measures on Polish Spaces -- 12. Derivates of Measures -- Appendix V -- Uniform Integrability -- Appendix VI -- Kernels and Transition Functions -- 1. Kernels -- 2. Universally Measurable Extension of a Kernel -- 3. Transition Functions -- Appendix VII -- Integral Limit Theorems -- 1. An Elementary Limit Theorem -- 2. Ratio Integral Limit Theorems -- 3. A One-Dimensional Ratio Integral Limit Theorem -- 4. A Ratio Integral Limit Theorem Involving Convex Variational Derivates -- Appendix VIII -- Lower Semicontinuous Functions -- 1. The Lower Semicontinuous Smoothing of a Function -- 2. Suprema of Families of Lower Semicontinuous Functions --  
653 |a Potential theory (Mathematics) 
653 |a Potential Theory 
653 |a Probability Theory and Stochastic Processes 
653 |a Probabilities 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Classics in Mathematics 
856 |u https://doi.org/10.1007/978-3-642-56573-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.96 
520 |a From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner". M. Brelot in Metrika (1986)