Le Cycles and Hypersurface Singularities

This book describes and gives applications of an important new tool in the study of complex analytic hypersurface singularities: the Lê cycles of the hypersurface. The Lê cycles and their multiplicities - the Lê numbers - provide effectively calculable data which generalizes the Milnor number of an...

Full description

Main Author: Massey, David
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1995, 1995
Edition:1st ed. 1995
Series:Lecture Notes in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 01952nmm a2200313 u 4500
001 EB000656559
003 EBX01000000000000000509641
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783540455219 
100 1 |a Massey, David 
245 0 0 |a Le Cycles and Hypersurface Singularities  |h Elektronische Ressource  |c by David Massey 
250 |a 1st ed. 1995 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1995, 1995 
300 |a XII, 136 p  |b online resource 
505 0 |a Definitions and basic properties -- Elementary examples -- A handle decomposition of the milnor fibre -- Generalized Lê-Iomdine formulas -- Lê numbers and hyperplane arrangements -- Thom’s a f condition -- Aligned singularities -- Suspending singularities -- Constancy of the Milnor fibrations -- Other characterizations of the Lê cycles 
653 |a Functions of complex variables 
653 |a Algebraic Topology 
653 |a Several Complex Variables and Analytic Spaces 
653 |a Algebraic topology 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Lecture Notes in Mathematics 
856 |u https://doi.org/10.1007/BFb0094409?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.94 
520 |a This book describes and gives applications of an important new tool in the study of complex analytic hypersurface singularities: the Lê cycles of the hypersurface. The Lê cycles and their multiplicities - the Lê numbers - provide effectively calculable data which generalizes the Milnor number of an isolated singularity to the case of singularities of arbitrary dimension. The Lê numbers control many topological and geometric properties of such non-isolated hypersurface singularities. This book is intended for graduate students and researchers interested in complex analytic singularities