Mathematical Methods of Quantum Optics

This book provides an accessible introduction to the mathematical methods of quantum optics. Starting from first principles, it reveals how a given system of atoms and a field is mathematically modelled. The method of eigenfunction expansion and the Lie algebraic method for solving equations are out...

Full description

Bibliographic Details
Main Author: Puri, Ravinder R.
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2001, 2001
Edition:1st ed. 2001
Series:Springer Series in Optical Sciences
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 06109nmm a2200385 u 4500
001 EB000656107
003 EBX01000000000000000509189
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783540449539 
100 1 |a Puri, Ravinder R. 
245 0 0 |a Mathematical Methods of Quantum Optics  |h Elektronische Ressource  |c by Ravinder R. Puri 
250 |a 1st ed. 2001 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2001, 2001 
300 |a XIII, 289 p  |b online resource 
505 0 |a 10.4 Exactly Solvable Two- and Three-Term Recursion Relations -- 11. Two-Level and Three-Level Hamiltonian Systems -- 11.1 Exactly Solvable Two-Level Systems -- 11.2 N Two-Level Atoms in a Quantized Field -- 11.3 Exactly Solvable Three-Level Systems -- 11.4 Effective Two-Level Approximation -- 12. Dissipative Atomic Systems -- 12.1 Two-Level Atom in a Quasimonochromatic Field -- 12.2 N Two-Level Atoms in a Monochromatic Field -- 12.3 Two-Level Atoms in a Fluctuating Field -- 12.4 Driven Three-Level Atom -- 13. Dissipative Field Dynamics -- 13.1 Down-Conversion in a Damped Cavity -- 13.2 Field Interacting with a Two-Photon Reservoir -- 13.3 Reservoir in the Lambda Configuration -- 14. Dissipative Cavity QED -- 14.1 Two-Level Atoms in a Single-Mode Cavity -- 14.2 Strong Atom—Field Coupling -- 14.3 Response to an External Field -- 14.4 The Micromaser -- Appendices -- A. Some Mathematical Formulae -- B. Hypergeometric Equation --  
505 0 |a C. Solution of Twoand Three-Dimensional Linear Equations -- D. Roots of a Polynomial -- References 
505 0 |a 1. Basic Quantum Mechanics -- 1.1 Postulates of Quantum Mechanics -- 1.2 Geometric Phase -- 1.3 Time-Dependent Approximation Method -- 1.4 Quantum Mechanics of a Composite System -- 1.5 Quantum Mechanics of a Subsystem and Density Operator -- 1.6 Systems of One and Two Spin-1/2s -- 1.7 Wave—Particle Duality -- 1.8 Measurement Postulate and Paradoxes of Quantum Theory -- 1.9 Local Hidden Variables Theory -- 2. Algebra of the Exponential Operator -- 2.1 Parametric Differentiation of the Exponential -- 2.2 Exponential of a Finite-Dimensional Operator -- 2.3 Lie Algebraic Similarity Transformations -- 2.4 Disentangling an Exponential -- 2.5 Time-Ordered Exponential Integral -- 3. Representations of Some Lie Algebras -- 3.1 Representation by Eigenvectors and Group Parameters -- 3.2 Representations of Harmonic Oscillator Algebra -- 3.3 Representations of SU(2) -- 3.4 Representations of SU(1, 1) -- 4. Quasiprobabilities and Non-classical States --  
505 0 |a 7.5 Effective Two-Level Atom -- 7.6 Multi-channel Models -- 7.7 Parametric Processes -- 7.8 Cavity QED -- 7.9 Moving Atom -- 8. Quantum Theory of Damping -- 8.1 The Master Equation -- 8.2 Solving a Master Equation -- 8.3 Multi-Time Average of System Operators -- 8.4 Bath of Harmonic Oscillators -- 8.5 Master Equation for a Harmonic Oscillator -- 8.6 Master Equation for Two-Level Atoms -- 8.7 aster Equation for a Three-Level Atom -- 8.8 Master Equation for Field Interacting with a Reservoir of Atoms -- 9. Linear and Nonlinear Response of a System in an External Field -- 9.1 Steady State of a System in an External Field -- 9.2 Optical Susceptibility -- 9.3 Rate of Absorption of Energy -- 9.4 Response in a Fluctuating Field -- 10. Solution of Linear Equations: Method of Eigenvector Expansion -- 10.1 Eigenvalues and Eigenvectors -- 10.2 Generalized Eigenvalues and Eigenvectors -- 10.3 Solution of Two-Term Difference-Differential Equation --  
505 0 |a 4.1 Phase Space Distribution Functions -- 4.2 Phase Space Representation of Spins -- 4.3 Quasiprobabilitiy Distributions for Eigenvalues of Spin Components -- 4.4 Classical and Non-classical States -- 5. Theory of Stochastic Processes -- 5.1 Probability Distributions -- 5.2 Markov Processes -- 5.3 Detailed Balance -- 5.4 Liouville and Fokker—Planck Equations -- 5.5 Stochastic Differential Equations -- 5.6 Linear Equations with Additive Noise -- 5.7 Linear Equations with Multiplicative Noise -- 5.8 The Poisson Process -- 5.9 Stochastic Differential Equation Driven by Random Telegraph Noise -- 6. The Electromagnetic Field -- 6.1 Free Classical Field -- 6.2 Field Quantization -- 6.3 Statistical Properties of Classical Field -- 6.4 Statistical Properties of Quantized Field -- 6.5 Homodvned Detection -- 6.6 Spectrum -- 7. Atom-Field Interaction Hamiltonians -- 7.1 DipoleInteraction -- 7.2 Rotating Wave and Resonance Approximations -- 7.3 Two-Level Atom -- 7.4 Three-Level Atom --  
653 |a Quantum Optics 
653 |a Laser 
653 |a Lasers 
653 |a Mathematical physics 
653 |a Quantum optics 
653 |a Theoretical, Mathematical and Computational Physics 
653 |a Mathematical Methods in Physics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Springer Series in Optical Sciences 
028 5 0 |a 10.1007/978-3-540-44953-9 
856 4 0 |u https://doi.org/10.1007/978-3-540-44953-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 535.15 
520 |a This book provides an accessible introduction to the mathematical methods of quantum optics. Starting from first principles, it reveals how a given system of atoms and a field is mathematically modelled. The method of eigenfunction expansion and the Lie algebraic method for solving equations are outlined. Analytically exactly solvable classes of equations are identified. The text also discusses consequences of Lie algebraic properties of Hamiltonians, such as the classification of their states as coherent, classical or non-classical based on the generalized uncertainty relation and the concept of quasiprobability distributions. A unified approach is developed for determining the dynamics of a two-level and a three-level atom interacting with combinations of quantized fields under certain conditions. Simple methods for solving a variety of linear and nonlinear dissipative master equations are given. The book will be valuable to newcomers to the field and to experimentalists in quantum optics