Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection

It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representa­ tion of the motion of a fluid in some particular case in which instability can actually be ob­ served, so that a detailed comparison can be made between the results...

Full description

Bibliographic Details
Main Author: Meyer-Spasche, Rita
Format: eBook
Language:English
Published: Basel Birkhäuser 1999, 1999
Edition:1st ed. 1999
Series:International Series of Numerical Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02998nmm a2200325 u 4500
001 EB000637057
003 EBX01000000000000000490139
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783034887090 
100 1 |a Meyer-Spasche, Rita 
245 0 0 |a Pattern Formation in Viscous Flows  |h Elektronische Ressource  |b The Taylor-Couette Problem and Rayleigh-Bénard Convection  |c by Rita Meyer-Spasche 
250 |a 1st ed. 1999 
260 |a Basel  |b Birkhäuser  |c 1999, 1999 
300 |a XI, 212 p. 58 illus  |b online resource 
505 0 |a 1 The Taylor Experiment -- 1.1 Modeling of the Experiment -- 1.2 Flows between Rotating Cylinders -- 1.3 Stability of Couette Flow -- 2 Details of a Numerical Method -- 2.1 Introduction -- 2.2 The Discretized System -- 2.3 Computation of Solutions -- 2.4 Computation of flow Parameters -- 2.5 Numerical Accuracy -- 3 Stationary Taylor Vortex Flows -- 3.1 Introduction -- 3.2 Computations with Fixed Period ? ? 2 -- 3.3 Variation of Flows with Period ? -- 3.4 Interactions of Secondary Branches -- 3.5 Re = 2 Recr and the (n, pn) Double Points -- 3.6 Stability of the Stationary Vortices -- 4 Secondary Bifurcations on Convection Rolls -- 4.1 Introduction -- 4.2 The Rayleigh-Bénard Problem -- 4.3 Stationary Convection Rolls -- 4.4 The (2,4) Interaction in a Model Problem -- 4.5 The (2,6) Interaction in a Model Problem -- 4.6 Generalisations and Consequences 
653 |a Physics and Astronomy 
653 |a Classical and Continuum Physics 
653 |a Mathematical Modeling and Industrial Mathematics 
653 |a Physics 
653 |a Astronomy 
653 |a Mathematical models 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a International Series of Numerical Mathematics 
028 5 0 |a 10.1007/978-3-0348-8709-0 
856 4 0 |u https://doi.org/10.1007/978-3-0348-8709-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530 
520 |a It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representa­ tion of the motion of a fluid in some particular case in which instability can actually be ob­ served, so that a detailed comparison can be made between the results of analysis and those of experiment. - G.l. Taylor (1923) Though the equations of fluid dynamics are quite complicated, there are configurations which allow simple flow patterns as stationary solutions (e.g. flows between parallel plates or between rotating cylinders). These flow patterns can be obtained only in certain parameter regimes. For parameter values not in these regimes they cannot be obtained, mainly for two different reasons: • The mathematical existence of the solutions is parameter dependent; or • the solutions exist mathematically, but they are not stable. For finding stable steady states, two steps are required: the steady states have to be found and their stability has to bedetermined