Summary: | This little book is the outgrowth of a one semester course which I have taught for each of the past four years at M. 1. T. Although this class used to be one of the standard courses taken by essentially every first year gradu ate student of mathematics, in recent years (at least in those when I was the instructor), the clientele has shifted from first year graduate students of mathematics to more advanced graduate students in other disciplines. In fact, the majority of my students have been from departments of engi neering (especially electrical engineering) and most of the rest have been economists. Whether this state of affairs is a reflection on my teaching, the increased importance of mathematical analysis in other disciplines, the superior undergraduate preparation of students coming to M. 1. T in mathematics, or simply the lack of enthusiasm that these students have for analysis, I have preferred not to examine too closely. On the other hand, the situation did force me to do a certain amount of thinking about what constitutes an appropriate course for a group of non-mathematicians who are courageous (foolish?) enough to sign up for an introduction to in tegration theory offered by the department of mathematics. In particular, I had to figure out what to do about that vast body of material which, in standard mathematics offerings, is "assumed to have been covered in your advanced calculus course" |