Heat Transfer A Modern Approach

There have been significant changes in the academic environment and in the workplace related to computing. Further changes are likely to take place. At Rensselaer Polytechnic Institute, the manner in which the subject of heat transfer is presented is evolving so as to accommodate to and, indeed, to...

Full description

Bibliographic Details
Main Author: Becker, M.
Format: eBook
Language:English
Published: New York, NY Springer US 1986, 1986
Edition:1st ed. 1986
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 05666nmm a2200325 u 4500
001 EB000627944
003 EBX01000000000000000481026
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781468412567 
100 1 |a Becker, M. 
245 0 0 |a Heat Transfer  |h Elektronische Ressource  |b A Modern Approach  |c by M. Becker 
250 |a 1st ed. 1986 
260 |a New York, NY  |b Springer US  |c 1986, 1986 
300 |a 440 p  |b online resource 
505 0 |a 4- 5. Difference Approximation for More than One Dimension -- Five. Transient Heat Conduction -- 5- 1. Introduction -- 5-2. Lumped Parameters -- 5-3. Separation of Variables -- 5-4. Cylindrical and Spherical Geometries -- 5-5. Analytical Solution—Large Media -- 5-6. Multidimensional Problems -- 5- 7. Finite Difference Approximation -- Six. Elements of Convection—The Flat Plate -- 6- 1. Introduction -- 6-2. General Conservation Equation -- 6-3. Fluid Boundary Layer -- 6-4. Thermal Boundary Layer -- 6-5. Heat Transfer Coefficient -- 6-6. Relation to Friction -- 6-7. Liquid Metals -- 6-8. Turbulence -- 6-9. High-Speed Flow -- 6- 10. Analogies to Mass Transfer -- Seven. Forced Convection -- 7- 1. Introduction -- 7-2. Laminar Flow in a Long Tube -- 7-3. Entrance Effects -- 7-4. Turbulent Flow in Tubes -- 7-5. Flow across Bluff Bodies -- 7-6. Banks ofTubes -- 7-7. Liquid Metals -- Eight. Natural Convection -- 8-1. Introduction -- 8-2. Gravity and Boundary Layer Theory --  
505 0 |a One. Introduction -- Two. One-dimensional Heat conduction in Source-Free Media -- 2-1. Introduction -- 2-2. Fourier’s Law -- 2-3. Plane Geometry -- 2-4. Multilayered Walls -- 2-5. Convection at Surfaces -- 2-6. Cylindrical Geometry -- 2-7. Overall Heat Transfer Coefficient -- 2-8. Critical Radius of Insulation -- 2- 9. Contact Resistance -- Three. One-dimensional Heat Conduction Equation -- 3- 1. Introduction -- 3-2. Conservation of Energy -- 3-3. Heat Conduction Equation in General Geometries -- 3-4. Heat Conduction in a Plane Wall with a Source -- 3-6. Cylindrical Geometry -- 3-7. Heat Transfer from Fins—Negative Sources -- 3-8. Fins of Nonuniform Area—Tapered Fins -- 3-9. Fins of Nonuniform Area—Circumferential Fins -- 3- 10. Difference Approximations for Heat Conduction -- Four. Steady-State Conduction in more than One Dimension -- 4- 1. Introduction -- 4-2. Conduction Shape Factors -- 4-3. Separation of Variables -- 4-4. Problems with Internal Heat Sources --  
505 0 |a 11-7. Variable Properties -- 11- 8. Averaging and Evaluating Properties -- Twelve. Heat Transfer Analysis and Design Problems -- 12- 1. Introduction -- 12-2. Heat Loss from Buildings -- 12-3. Heat Loss from Piping -- 12-4. Flat Plate Solar Collector -- 12-5. Summary -- Appendix A. Heat Transfer Data -- Appendix B. Mathematical Appendixes -- Appendix C. Selected Computer Routines -- Appendix D. Relationship between Spreadsheets and Explicit Programs -- Appendix E. Elements of spreadsheet usage -- Appendix F. Summary of parameters, Formulas, and Equations 
505 0 |a 8-3. Analysis for the Vertical Flat Plate -- 8-4. Vertical and Horizontal Surfaces -- 8-5. Inclined Surfaces -- 8-6. Enclosed Spaces -- 8-7. Free and Forced Convection -- Nine. Convection with Phase Changes -- 9- 1. Introduction -- 9-2. Condensation on a Vertical Surface -- 9- 3. Condensation with Horizontal Tubes -- 9-4. Boiling Process -- 9-5. Boiling Heat Transfer—Pool Boiling -- 9-6. Forced Convection Boiling -- Ten. Radiation -- 10-1. Introduction -- 10-2. Black Body Radiation -- 10-3. Shape Factors -- 10-4. Interaction among Grey Bodies—Reflection -- 10- 5. Radiation Shields -- 10-6. Interactions Involving Transmission -- 10- 7. Specular Reflection -- 10- 8. Gases -- Eleven. Heat Exchangers -- 11- 1. Introduction -- 11-2. Types of Heat Exchangers -- 11-3. Concentric Pipe Heat Exchanger -- 11-4. Log-Mean Temperature Difference and Other Types of Heat Exchangers -- 11-5. Heat Exchanger Effectiveness -- 11-6. Practical Operating Considerations—Fouling Factors --  
653 |a Chemistry, Technical 
653 |a Mechanical engineering 
653 |a Mechanical Engineering 
653 |a Industrial Chemistry 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-1-4684-1256-7 
856 4 0 |u https://doi.org/10.1007/978-1-4684-1256-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 660 
520 |a There have been significant changes in the academic environment and in the workplace related to computing. Further changes are likely to take place. At Rensselaer Polytechnic Institute, the manner in which the subject of heat transfer is presented is evolving so as to accommodate to and, indeed, to participate in, the changes. One obvious change has been the introduction of the electronic calcula­ tor. The typical engineering student can now evaluate logarithms, trigonomet­ ric functions, and hyperbolic functions accurately by pushing a button. Teaching techniques and text presentations designed to avoid evaluation of these functions or the need to look them up in tables with associated interpolation are no longer necessary. Similarly, students are increasingly proficient in the use of computers. At RPI, every engineering student takes two semesters of computing as a fresh­ man and is capable of applying the computer to problems he or she encoun­ ters. Every student is given personal time on the campus computer. In addition, students have access to personal computers. In some colleges, all engineering students are provided with personal computers, which can be applied to a variety of tasks