Electromagnetic and Quantum Measurements A Bitemporal Neoclassical Theory

It is a pleasure to write a foreword for Professor Tore Wessel-Berg's book, "Electromagnetic and Quantum Measurements: A Bitemporal Neoclassical Theory." This book appeals to me for several reasons. The most important is that, in this book, Wessel-Berg breaks from the pack. The distin...

Full description

Bibliographic Details
Main Author: Wessel-Berg, Tore
Format: eBook
Language:English
Published: New York, NY Springer US 2001, 2001
Edition:1st ed. 2001
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 05233nmm a2200349 u 4500
001 EB000624201
003 EBX01000000000000000477283
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461516033 
100 1 |a Wessel-Berg, Tore 
245 0 0 |a Electromagnetic and Quantum Measurements  |h Elektronische Ressource  |b A Bitemporal Neoclassical Theory  |c by Tore Wessel-Berg 
250 |a 1st ed. 2001 
260 |a New York, NY  |b Springer US  |c 2001, 2001 
300 |a XXI, 373 p. 82 illus  |b online resource 
505 0 |a 9.4 Macroscopic scattering in the radial resistor system -- 9.5 Single photon absorption and reflection at the resistor -- 9.6 Concluding remarks -- 10. Questioning Stern-Gerlach -- 10.1 Basis of the Stern-Gerlach experiment -- 10.2 The flaw in the Stern-Gerlach theory -- 11. Photon Tunneling—Superluminal? -- 11.1 Photon tunneling in a microwave configuration -- Appendix to Chapter 11 -- 12. Interferometric Experiments -- 12.1 Introduction -- 12.2 Neoclassical theory of the beam splitter -- 12.3 The Mach-Zehnder interferometer -- 12.4 Mach-Zehnder delayed choice experiment -- 13. The Famous Epr Paradox -- 13.1 Introduction -- 13.2 The basic EPR configuration -- 13.3 Neoclassical theory of the EPR configuration -- 13.4 The EPR paradox in neoclassical interpretation -- 14. Quantum Bases-Neoclassical View -- 14.1 Introduction -- 14.2 Quantum principles and ‘foolish questions’ -- 14.3 The uncertainty relation—how uncertain? --  
505 0 |a 14.4 Collapse of the wave function-the measurement problem -- References 
505 0 |a 1. The Causal Enigma -- 1.1 Microcosm—is it causal or bitemporal? -- 1.2 The neoclassical electromagnetic theory -- 1.3 Causal theories—incomplete in microcosm -- 2. Photons in Bitemporal Microcosm -- 2.1 Introduction -- 2.2 Plane photon pulses in the bitemporal time domain -- 2.3 The photon routing process -- 2.4 Photon doublets—the new entities -- 2.5 Concluding remarks -- 3. Neoclassical Electromagnetics -- 3.1 Definition of the generalized circuit -- 3.2 Generalized circuit equation -- 3.3 General definition of photon doublets -- 3.4 The scattering formulation of circuit response -- Appendix to Chapter 3 -- 4. Are Electron Media Bitemporal? -- 4.1 Doublet interactions in collisionless plasmas -- 4.2 Bitemporal collision scattering in conductors -- 4.3 Bitemporal DC conduction in a circular wire -- 5. Photon Wave-Particle Transition -- 5.1 Introduction—the paradox -- 5.2 Classical time average macroscopic transition -- 5.3 Wave to particle transition of single photons --  
505 0 |a 5.4 Photon emission and absorption by atoms -- 5.5 Photon wave to particle transition in striplines -- 6. Photons in General Networks -- 6.1 Classical circuit modeling -- 6.2 Single photon predicament in general circuits -- 6.3 Neoclassical theory of single photons in networks -- 7. Double Slit Experiment for Photons -- 7.1 Introduction—the paradoxes -- 7.2 Classical macroscopic model -- 7.3 Neoclassical theory of single photon routing -- 7.4 Numerical procedure of spot build up pattern -- Appendix to Chapter 7 -- A.2 Slit plate scattering matrix -- 8. Double Slit Experiment for Electrons -- 8.1 Introduction—the paradoxes -- 8.2 Electromagnetic fields of the double slit plate -- 8.3 Diffraction pattern with numerical simulations -- 8.4 Neoclassical theory of electron diffraction from a single slit -- 9. The Enigmatic 1/F Noise -- 9.1 What is 1/f noise? -- 9.2 Hooge’s empirical 1/f hypothesis -- 9.3 Photon excitation of 1/f noise --  
653 |a Quantum field theory 
653 |a Characterization and Evaluation of Materials 
653 |a Elementary particles (Physics) 
653 |a Materials science 
653 |a Mathematical physics 
653 |a Theoretical, Mathematical and Computational Physics 
653 |a Elementary Particles, Quantum Field Theory 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
856 4 0 |u https://doi.org/10.1007/978-1-4615-1603-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.1 
520 |a It is a pleasure to write a foreword for Professor Tore Wessel-Berg's book, "Electromagnetic and Quantum Measurements: A Bitemporal Neoclassical Theory." This book appeals to me for several reasons. The most important is that, in this book, Wessel-Berg breaks from the pack. The distinguished astrophysicist Thomas Gold has written about the pressures on scientists to move in tight formation, to avoid having their legs nipped by the sheepdogs of science. This book demonstrates that Wessel-Berg is willing to take that risk. I confess that I do not sufficiently understand this book to be able to either agree or disagree with its thesis. Nevertheless, Wessel-Berg makes very cogent arguments for setting out on his journey. The basic equations of physics are indeed time-reversible. Our experience, that leads us to the concept of an "arrow of time," is derived from macro­ scopic phenomena, not from fundamental microscopic phenomena. For this reason, it makes very good sense to explore the consequences of treating microscopic phenomena on the assumption that forward time and backward time are equal