Notes on Lie Algebras

(Cartan sub Lie algebra, roots, Weyl group, Dynkin diagram, . . . ) and the classification, as found by Killing and Cartan (the list of all semisimple Lie algebras consists of (1) the special- linear ones, i. e. all matrices (of any fixed dimension) with trace 0, (2) the orthogonal ones, i. e. all s...

Full description

Bibliographic Details
Main Author: Samelson, Hans
Format: eBook
Language:English
Published: New York, NY Springer New York 1990, 1990
Edition:2nd ed. 1990
Series:Universitext
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03565nmm a2200301 u 4500
001 EB000623065
003 EBX01000000000000000476147
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461390145 
100 1 |a Samelson, Hans 
245 0 0 |a Notes on Lie Algebras  |h Elektronische Ressource  |c by Hans Samelson 
250 |a 2nd ed. 1990 
260 |a New York, NY  |b Springer New York  |c 1990, 1990 
300 |a XII, 162 p. 3 illus  |b online resource 
505 0 |a 1 Generalities -- 1.1 Basic definitions, examples -- 1.2 Structure constants -- 1.3 Relations with Lie groups -- 1.4 Elementary algebraic concepts -- 1.5 Representations; the Killing form -- 1.6 Solvable and nilpotent -- 1.7 Engel’s theorem -- 1.8 Lie’s theorem -- 1.9 Cartan’s first criterion -- 1.10 Cartan’s second criterion -- 1.11 Representations of A1 -- 1.12 Complete reduction for A1 -- 2 Structure Theory -- 2.1 Cartan subalgebra -- 2.2 Roots -- 2.3 Roots for semisimple g -- 2.4 Strings -- 2.5 Cartan integers -- 2.6 Root systems, Weyl group -- 2.7 Root systems of rank two -- 2.8 Weyl-Chevalley normal form, first stage -- 2.9 Weyl-Chevalley normal form -- 2.10 Compact form -- 2.11 Properties of root systems -- 2.12 Fundamental systems -- 2.13 Classification of fundamental systems -- 2.14 The simple Lie algebras -- 2.15 Automorphisms -- 3 Representations -- 3.1 The Cartan-Stiefel diagram -- 3.2 Weights and weight vectors -- 3.3 Uniqueness and existence -- 3.4 Complete reduction -- 3.5 Cartan semigroup; representation ring -- 3.6 The simple Lie algebras -- 3.7 The Weyl character formula -- 3.8 Some consequences of the character formula -- 3.9 Examples -- 3.10 The character ring -- 3.11 Orthogonal and symplectic representations -- References -- Symbol Index 
653 |a Topological Groups and Lie Groups 
653 |a Lie groups 
653 |a Topological groups 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Universitext 
028 5 0 |a 10.1007/978-1-4613-9014-5 
856 4 0 |u https://doi.org/10.1007/978-1-4613-9014-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 512.482 
082 0 |a 512.55 
520 |a (Cartan sub Lie algebra, roots, Weyl group, Dynkin diagram, . . . ) and the classification, as found by Killing and Cartan (the list of all semisimple Lie algebras consists of (1) the special- linear ones, i. e. all matrices (of any fixed dimension) with trace 0, (2) the orthogonal ones, i. e. all skewsymmetric ma­ trices (of any fixed dimension), (3) the symplectic ones, i. e. all matrices M (of any fixed even dimension) that satisfy M J = - J MT with a certain non-degenerate skewsymmetric matrix J, and (4) five special Lie algebras G2, F , E , E , E , of dimensions 14,52,78,133,248, the "exceptional Lie 4 6 7 s algebras" , that just somehow appear in the process). There is also a discus­ sion of the compact form and other real forms of a (complex) semisimple Lie algebra, and a section on automorphisms. The third chapter brings the theory of the finite dimensional representations of a semisimple Lie alge­ bra, with the highest or extreme weight as central notion. The proof for the existence of representations is an ad hoc version of the present standard proof, but avoids explicit use of the Poincare-Birkhoff-Witt theorem. Complete reducibility is proved, as usual, with J. H. C. Whitehead's proof (the first proof, by H. Weyl, was analytical-topological and used the exis­ tence of a compact form of the group in question). Then come H.