Semiconductor Lithography Principles, Practices, and Materials

Semiconductor lithography is one of the key steps in the manufacturing of integrated silicon-based circuits. In fabricating a semiconductor device such as a transistor, a series of hot processes consisting of vacuum film deposition, oxidations, and dopant implantation are all patterned into microsco...

Full description

Bibliographic Details
Main Author: Moreau, Wayne M.
Format: eBook
Language:English
Published: New York, NY Springer US 1988, 1988
Edition:1st ed. 1988
Series:Microdevices, Physics and Fabrication Technologies
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 8-1. Introduction
  • 8-2. Optical Principles
  • 8-3. Contact and Proximity Print
  • 8-4. Projection Print
  • 8-5. Overlay
  • 8-6. Miscellaneous Exposure Techniques
  • 8-7. Photomasks
  • 8-8. Sensitometry
  • 8-9. Outlook
  • 9. Radiation Exposure
  • 9-1. Introduction
  • 9-2. Electron-Beam Performance
  • 9-3. Electron-Beam Exposure Equipment
  • 9-4. Electron-Beam-Resist Interaction
  • 9-4-1. Charging of Resist
  • 9-4-2. Resist Outgassing
  • 9-5. Registration
  • 9-6. Proximity Effects
  • 9-7. Radiation Damage
  • 9-8. X-Ray and Ion-Beam Exposure
  • 9-8-1. X Rays
  • 9-8-2. Ion Beams
  • 9-9. Outlook
  • 10. Developing Resist Images
  • 10-1. Introduction
  • 10-2. General Mechanisms
  • 10-3. PMMA Developer Sensitivity
  • 10-4. Enhancement of R and R0 of PMMA
  • 10-5. Diazoquinone-Novolak Resists
  • 10-5-1. Introduction
  • 10-5-2. Modeling DQN Development
  • 10-5-2-1. Photokinetics of Exposure
  • 10-5-2-2. Kinetics of Dissolution
  • 10-6. Development of Negative Resists
  • 16-1-1. Elementary Considerations
  • 16-1-2. Chemical and Thermal Energy Requirements
  • 16-1-3. Laser Sources
  • 16-2. Gas-Solid Photon-Induced Reactions
  • 16-2-1. Deposition
  • 6-2-3-3. Removal of Contaminants on the Wafer Surface
  • 6-2-4. Detection of Contaminants on the Wafer Surface
  • 6-3. Storage of Cleaned Wafers
  • 6-4. Adhesion Promoters
  • 6-5. Physical Chemistry of Spin Coating
  • 6-5-1. Solvents for Spin Coating
  • 6-5-2. Practical Aspects of Spin Coating
  • 6-6. Other Resist Coating Techniques
  • 6-6-1. Langmuir-Blodgett Films
  • 6-6-2. Gas-Phase Deposition
  • 6-7. Resist Film Thickness Measurements
  • 6-8. Pinholes in Resist Films
  • 6-8-1. Causes of Pinholes
  • 6-8-2. Measurement of Pinholes in Resist Films
  • 6-8-3. Reduction and Control of Pinholes in Resist Films
  • 6-9. Summary and Outlook of Resist Coatings
  • 7. Prebake (Softbake)
  • 7-1. Introduction
  • 7-2. Kinetics of Prebaking
  • 7-3. Physical Changes inPrebaking
  • 7-3-1. Residual Stress Strain
  • 7-3-2. Measurement of Residual Solvent in Prebaked Films
  • 7-4. Prebaking Positive Resists
  • 7-5. Prebake Equipment and Processes
  • 7-6. Summary
  • 8. Optical Exposure
  • 12-7-3. Dual-Layer Plasma Etch Transfer
  • 12-8. High-Temperature Lift-off
  • 12-9. Summary and Outlook of Double-Layer Resists
  • 12-10. Trilayer Resists
  • 12-10-1. Planarizing Layers
  • 12-10-2. Barrier Layers
  • 12-10-3. Image Layer
  • 12-11. Practical MLR Processing
  • 12-12. Metal Deposition and Lift-off
  • 12-12-1. Resist Profile and Lift-off
  • 12-12-2. Resist Thickness and Lift-off
  • 12-13. Lift-ofT Process Control
  • 12-14. Miscellaneous Additive Processes
  • 12-15. Electroplating with Resists
  • 12-16. Ion Implantation Resist Masking
  • 13. Subtractive Etching
  • 13-1. Introduction
  • 13-1-1. General Principles of the Rate of Etching
  • 13-1-2. Phenomenological Mechanisms of Etching
  • 13-2. Liquid Etching
  • 13-2-1. SiO2 Liquid Etching
  • 13-2-2. Wetting, Adhesion, and Undercutting
  • 13-2-3. Surface Primers and Treatments
  • 13-2-4. Stress in Resist Films
  • 13-3. Passivity in Etching SiO2
  • 13-4. Silicon Etching
  • 13-5. Sandwich Etching
  • 13-6. Aluminum Etching
  • 1. Introduction
  • 1-1. Semiconductor Device Manufacturing
  • 1-2. Lithography Processing and Materials
  • 1-3. Lithography Costs and Process Equipment
  • 1-4. Organization of the Book
  • 2. Positive Photoresists
  • 2-1. Introduction
  • 2-2. Diazoquinone Photoresists
  • 2-2-1. General Performance
  • 2-2-2. General Photochemistry and Solubility Properties
  • 2-2-3. Spectral Absorbance
  • 2-2-4. Resins for DQ Resists
  • 2-2-5. Chemical Mechanisms in DQN
  • 2-3. Shelf Life and Quality Control of DQN
  • 2-4. Summary and Outlook on DQN Resists
  • 2-5. Deep-UV Exposure
  • 2-5-1. Optical Systems
  • 2-5-2. Resist Sensitometry
  • 2-5-3. Deep-UV Resists
  • 2-6. PMMA and PMIPK
  • 2-6-1. PMMA
  • 2-6-2. PMIPK
  • 2-6-3. Summary
  • 2-7. Nitroaldehyde Resists
  • 2-8. Photocatalyzed Positive Resists
  • 2-9. Miscellaneous Positive Deep-UV Resists
  • 2-10. Outlook
  • 3. Positive Radiation Resists
  • 3-1. Introduction
  • 3-1-1. Tool Contributions
  • 3-1-2. Resist Considerations
  • 4-3-5. Oxygen Effect in Azide Resists
  • 4-4. Miscellaneous Radical-Based Photoresists
  • 4-5. High-Temperature Negative Photoresists
  • 4-6. Photopolymerization
  • 4-7. Charge Transfer Resists
  • 4-8. Inorganic Resists
  • 4-9. Summary and Outlook
  • 5. Negative Radiation Resists
  • 5-1. Introduction
  • 5-2. X-Ray Resists
  • 5-3. Ion-Beam Resists
  • 5-4. Electron-Beam Resists
  • 5-4-1. Styrene-Based Resists
  • 5-4-2. Epoxy-Based Resists
  • 5-4-3. Allyl-Based Resists
  • 5-4-4. Charge Transfer Resists
  • 5-4-5. Silicone Negative Resists
  • 5-4-6. Miscellaneous Resists
  • 5-5. Two-Component Resists
  • 5-6. Practical Use of Negative Electron-Beam Resists
  • 5-7. Outlook
  • 6. Surface Preparation and Coatin
  • 6-1. Introduction
  • 6-2. Cleaning the Wafer Surface
  • 6-2-1. Contamination and General Consequences
  • 6-2-2. Causes and Mechanisms of Surface Contamination
  • 6-2-3. Removal of Contaminants
  • 6-2-3-1. Clean Rooms
  • 6-2-3-2. Liquid Contamination
  • 3-1-3. High-Energy Radiation Absorption
  • 3-1-4. Radiation Chemical Reactions
  • 3-2. X-Ray Positive Resists
  • 3-2-1. Basic Exposure Tool
  • 3-2-2. X-Ray Positive Resists
  • 3-3. Positive Ion-Beam Resists
  • 3-4. Electron-Beam Positive Resists
  • 3-4-1. Electron-Beam Tool and Process Considerations
  • 3-4-2. One-Component Positive Radiation Resists
  • 3-4-3. Pre-cross-linked PMMA Resist
  • 3-4-3-1. Plasma Stability of PMMA
  • 3-4-3-2. Processing
  • 3-4-3-3. Outlook for PMMA
  • 3-5. Polyolefin Sulfones and Other Electron-Beam Positive Resists
  • 3-6. Practical Positive Resists
  • 3-7. Outlook
  • 4. Negative Photoresists
  • 4-1. Introduction
  • 4-1-1. Chemical Reactions
  • 4-1-2. Exposure and Contrast
  • 4-1-3. Photosensitizers
  • 4-1-4. Commercial Resist Compositions
  • 4-2. Polyvinylcinnamate
  • 4-3. Azide-Sensitized Resists
  • 4-3-1. Azide-Activated Formulations.-4-3-2. Photochemistry of Azides
  • 4-3-3. Rubber and Phenolic Based Systems
  • 4-3-4. Photospeed of Rubber Azide
  • 13-6-1. Etchants for Aluminum
  • 13-6-2. Electroetching
  • 13-6-3. Summary
  • 13-7. Practical Aspects of Wet Etching
  • 13-8. Troubleshooting Etching
  • 13-8-1. Spray versus Static Etching
  • 13-8-2. Other Etching Considerations
  • 13-9. Modeling of Wet Etching
  • 13-10. Outlook of Wet Etching
  • 13-11. Introduction to Gas Etching
  • 13-12. Aluminum Etching
  • 13-12-1. Introduction
  • 13-12-2. Mechanism of A1 Etching
  • 13-12-3. Selectivity of A1 Etching
  • 13-12-4. Residue and Postetch Corrosion
  • 13-12-5. Resist Hardening
  • 13-12-6. PracticalA1 Etching
  • 13-12-7. Summary
  • 13-13. Silicon Etching
  • 13-13-1. Introduction
  • 13-13-2. Gas-Phase Etching
  • 13-13-2-1. Thermal Gas-Phase Etching
  • 13-13-2-2. Plasma Etching
  • 13-13-2-3. Plasma Etch Rates of Radical Systems
  • 13-13-2-4. Plasma Ion Etching
  • 13-13-2-5. Role of Plasma-Deposited Polymers
  • 13-13-2-6. Gas-Phase Recombination Model
  • 13-13-2-7. Role of Electrode in Etching
  • 13-13-2-8. Summary of Plasma Etching Mechanisms
  • 13-13-3. Selectivity
  • 13-13-4. Etch Profiles and Image Bias
  • 13-13-4-1. Etch Profile Factors
  • 13-13-4-2. Ion Transport Model
  • 13-13-5. Uniformity of Plasma Etching
  • 13-13-6. Plasma Etching Contamination
  • 13-13-6-1. Sputtered Metals
  • 13-13-6-2. Insulation Deposits
  • 13-13-6-3. Etch Residues
  • 13-13-6-4. Radiation Damage
  • 13-13-7. Applications of Plasma Processing
  • 13-13-8. Loading Effects
  • 13-13-9. Etch Rate and Endpoint Monitor
  • 13-14. Summary and Outlook of Etching
  • 14. Stripping of Resists
  • 14-1. Introduction
  • 14-2. Liquid Stripping Formulations
  • 14-2-1. Organic Solvent Strippers
  • 14-2-1-1. Simple Solvent Strippers
  • 14-2-1-2. Multiple Component Strippers
  • 14-2-1-3. Surface Wetting Agents
  • 14-2-2. Typical Liquid Strippers
  • 14-3. Water-Based Strippers
  • 14-3-1. Acidic Strippers
  • 14-3-2. Alkaline Strippers
  • 14-4. Practical Aspects of Stripping
  • 14-5. Plasma Gas Stripping of Resists
  • 14-5-1. Reactants of Plasma Stripping
  • 14-5-2. Polymeric Reactants
  • 14-5-3. Oxygen Plasma
  • 14-5-4. Plasma Radiation Field
  • 14-6. Kinetics of Stripping
  • 14-6-1. Gas-Solid Interactions
  • 14-6-2. Activation Energy of Stripping
  • 14-6-3. Monitoring Plasma Stripping
  • 14-6-4. Resist Stripping Rates and Polymer Structure
  • 14-7. Side Effects of Plasma Stripping
  • 14-7-1. Detection of Damage
  • 14-7-2. Prevention and Control of Damage
  • 14-8. Plasma Stripping Apparatus
  • 14-9. Miscellaneous Stripping Techniques
  • 14-10. Applications of Oxygen Plasma to Semiconductor Lithography
  • 14-11. Outlook
  • 15. Process Controls
  • 15-1. General Process Considerations
  • 15-2. Lithographic Process Automation
  • 15-3. Resist Material Controls
  • 15-4. Resist Processing Controls
  • 15-4-1. Exposure Controls
  • 15-4-2. Development Process Controls
  • 15-4-3. Etching Process Controls
  • 15-5. Process Troubleshooting
  • 15-6. Summary
  • 16. Nonresist Processe
  • 16-1. Introduction
  • 10-7. Dry Development
  • 10-7-1. Direct Image Formation
  • 10-7-2. Plasma-Developed Resists
  • 10-7-2-1. Monomer Matrices for Plasma-Developable Resists
  • 10-7-2-2. Polymer Matrices for Plasma Development
  • 10-7-3. Plasma Etching without Development
  • 10-7-4. Outlook for Dry Development
  • 10-8. Practical Development of Resists
  • 11. Postbake
  • 11-1. Introduction
  • 11-2. Physical Chemistry of Postbake
  • 11-2-1. Adhesion
  • 11-2-2. Melting
  • 11-3. Chemical Reactions in Postbake
  • 11-4. Other Methods of Hardening DQN
  • 11-5. Practical Postbaking
  • 11-6. Summary and Outlook
  • 12. Additive Processes
  • 12-1. Introduction
  • 12-2. Single-Layer Resist for Resist Processes
  • 12-3. DQN for Lift-off
  • 12-4. Lift-off with PMMA Films
  • 12-5. Single-Film Lift-off with Shallow-Profile Resists
  • 12-6. Summary and Outlook of Single Films
  • 12-7. Double-Layer Resist
  • 12-7-1. Developer Transfer Bilayer Resist
  • 12-7-2. Optical Dual-Layer Resist