Forward Recoil Spectrometry Applications to Hydrogen Determination in Solids

The practical properties of many materials are dominated by surface and near-surface composition and structure. An understanding of how the surface region affects material properties starts with an understanding of the elemental composition of that region. Since the most common contaminants are ligh...

Full description

Bibliographic Details
Main Authors: Serruys, Y., Tirira, J. (Author), Trocellier, P. (Author)
Format: eBook
Language:English
Published: New York, NY Springer US 1996, 1996
Edition:1st ed. 1996
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 06640nmm a2200445 u 4500
001 EB000621002
003 EBX01000000000000000474084
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461303534 
100 1 |a Serruys, Y. 
245 0 0 |a Forward Recoil Spectrometry  |h Elektronische Ressource  |b Applications to Hydrogen Determination in Solids  |c by Y. Serruys, J. Tirira, P. Trocellier 
250 |a 1st ed. 1996 
260 |a New York, NY  |b Springer US  |c 1996, 1996 
300 |a 434 p  |b online resource 
505 0 |a References -- 6. Time of Flight ERDA -- 6.1. Introduction -- 6.2. General Considerations -- 6.3. Time of Flight Detector -- 6.4. Electrostatic Mirror Detector -- 6.5. Efficiency and Resolution -- 6.6. Data Analysis Procedure -- 6.7. Conclusion -- References -- 7. Depth Profiling by Means of the ERDA ExB Technique -- 7.1. Introduction -- 7.2. Physics and Properties of the ExB Filter -- 7.3. Practical Considerations -- 7.4. Adjustments for a 350-keV Helium Beam -- 7.5. Depth Profiling with a High-Energy (MeV) Beam -- 7.6. Modified ExB Filter for Heavier Elements -- 7.7. Conclusion -- References -- 8. Recoil Spectrometry with a ?E-E Telescope -- 8.1. Introduction -- 8.2. Experimental Considerations -- 8.3. Performances -- 8.4. Examples -- 8.5. Conclusion -- References -- 9. Coincidence Techniques -- 9.1. Introduction -- 9.2. Transmission Geometry andCoincidence Techniques -- 9.3. Single-Element Analysis with CERDA -- 9.4. Multiple-Element Analysis with CERDA --  
505 0 |a 12.5. Study of Interface Reactions -- 12.6. Other Application Fields -- 12.7. Study of Hydrogen Behavior under Irradiation -- 12.8. Conclusion -- References -- 13. Elastic Recoil Spectrometry Using High-Energy Ions for Hydrogen and Light Element Profiling -- 13.1. Introduction -- 13.2. General Considerations -- 13.3. Experimental Arrangement for HI-ERDA -- 13.4. Detection Capabilities -- 13.5. Application Examples -- 13.6. Conclusion -- References -- 14. Ion-Beam Damaging Effects -- 14.1. Introduction -- 14.2. Basic Considerations on Ion-Beam Damaging -- 14.3. Elemental Losses -- 14.4. Reduction of Radiation Damage -- 14.5. Choice, Preparation, and Stability of Standard Samples -- 14.6. Conclusion -- References -- 15. HydrogenDetermination by Nuclear Resonance -- 15.1. Introduction -- 15.2. General Considerations -- 15.3. Hydrogen Profiling by Nuclear Resonance -- 15.4. Comparison with Elastic Recoil Spectrometry -- 15.5. Conclusion -- References -- General Conclusion --  
505 0 |a Acknowledgments -- Appendix A. Basic Data References -- Appendix B. Calculation of the Detection Solid Angle -- Appendix C. Specific Units, Physical Constants, and Conversion Factors -- Appendix D. Recent References -- Appendix E. Acronyms 
505 0 |a 1. Introduction -- 1.1. General Description -- 1.2. Objectives -- 1.3. Topics -- 1.4. Historical Background -- 1.5. Extension of the ERDA Method in IBA Laboratories Worldwide -- 1.6. Conclusion -- References -- 2. Basic Physical Processes of Elastic Spectrometry -- 2.1. Introduction -- 2.2. Kinematics of Elastic Collision -- 2.3. Geometric Considerations -- 2.4. Energy Loss -- 2.5. Straggling -- 2.6. Conclusion -- References -- 3. Elastic Scattering: Cross-Section and Multiple Scattering -- 3.1. Introduction -- 3.2. Elastic Cross Section -- 3.3. Multiple Scattering -- References -- 4. Elastic Spectrometry: Fundamental and Practical Aspects -- 4.1. Introduction -- 4.2. Fundamentals of Recoil Spectrometry -- 4.3. Practical Spectrometry of Real Targets -- References -- 5. Conventional Recoil Spectrometry -- 5.1. Introduction -- 5.2. Mass—Depth and Recoil-Scattered Ion Ambiguities -- 5.3. Glancing Geometry -- 5.4. Transmission Geometry -- 5.5. Sensitivity -- 5.6. Mass Resolution --  
505 0 |a 9.5. Scattering Recoil Coincidence Spectroscopy -- 9.6. Elastic Recoil Coincidence Spectroscopy -- 9.7. Position-Sensitive Detectors for Coincidence ERDA Techniques -- 9.8. Conclusion -- References -- 10. Instrumental Equipment -- 10.1. Introduction -- 10.2. Accelerator and Related Equipment -- 10.3. Beam Line -- 10.4. Analysis Chamber -- 10.5. Detection Devices -- 10.6. Conclusion -- References -- 11. Numerical Methods for Recoil Spectra Simulation and Data Processing -- 11.1. Introduction -- 11.2. Simulation Process: Basic Method -- 11.3. Alternative Simulation Process: Retrograde Method -- 11.4. Profile Extraction from Experimental Spectra -- 11.5. Algorithms and Programs -- 11.6. Adaptation to Other ERDA Variants -- 11.7. Conclusion -- References -- 12. Applications of Elastic Recoil Spectrometry to Hydrogen Determination in Solids -- 12.1. Introduction -- 12.2. Applications in Polymer Sciences -- 12.3. Applications to Semiconductor Materials -- 12.4. Applications to Thin Films --  
653 |a Atoms 
653 |a Spectrum analysis 
653 |a Atomic, Molecular and Chemical Physics 
653 |a Condensed Matter Physics 
653 |a Spectroscopy 
653 |a Analytical chemistry 
653 |a Analytical Chemistry 
653 |a Crystallography 
653 |a Condensed matter 
653 |a Crystallography and Scattering Methods 
653 |a Molecules 
700 1 |a Tirira, J.  |e [author] 
700 1 |a Trocellier, P.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-1-4613-0353-4 
856 4 0 |u https://doi.org/10.1007/978-1-4613-0353-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 543 
520 |a The practical properties of many materials are dominated by surface and near-surface composition and structure. An understanding of how the surface region affects material properties starts with an understanding of the elemental composition of that region. Since the most common contaminants are light elements (for example, oxygen, nitrogen, carbon, and hydrogen), there is a clear need for an analytic probe that simultaneously and quantitatively records elemental profiles of all light elements. Energy recoil detection using high-energy heavy ions is unique in its ability to provide quantitative profiles of light and medium mass elements. As such this method holds great promise for the study of a variety of problems in a wide range of fields. While energy recoil detection is one of the newest and most promising ion beam analytic techniques, it is also the oldest in terms of when it was first described. Before discussing recent developments in this field, perhaps it is worth reviewing the early days of this century when the first energy recoil detection experiments were reported