High Temperature Superconductivity

One of the most exciting developments in modern physics has been the discovery of the new class of oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. Indeed, the idea of...

Full description

Bibliographic Details
Other Authors: Lynn, Jeffrey W. (Editor)
Format: eBook
Language:English
Published: New York, NY Springer New York 1990, 1990
Edition:1st ed. 1990
Series:Maryland Subseries: Based on Lectures at the University of Maryland, College Park
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04940nmm a2200301 u 4500
001 EB000619434
003 EBX01000000000000001348381
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781461232223 
100 1 |a Lynn, Jeffrey W.  |e [editor] 
245 0 0 |a High Temperature Superconductivity  |h Elektronische Ressource  |c edited by Jeffrey W. Lynn 
250 |a 1st ed. 1990 
260 |a New York, NY  |b Springer New York  |c 1990, 1990 
300 |a XV, 403 p  |b online resource 
505 0 |a 5 Electronic Structure, Lattice Dynamics, and Magnetic Interactions -- 5.1. Introduction -- 5.2. Electronic Structure of La2?x (Ba,Sr)x CuO4 -- 5.3. Electronic Properties of YBa2 Cu3 O7?x -- 5.4. Electronic Structure of the Bismuth and Thallium Superconductors -- 5.5. Electron-Phonon Interaction -- 5.6. Electron-Electron Correlations -- References -- 6 Synthesis and Diamagnetic Properties -- 6.1. Introduction -- 6.2. The System La2?xM x CuO4?y (M = Ba, Sr, Ca) -- 6.3. The System MBa2 Cu3 Ox(M = Rare Earth) -- 6.4. Superconductivity above 100 K -- References -- 7 Thermal and Transport Properties -- 7.1. Introduction -- 7.2. Normal State Transport Properties of the High-TCOxides -- 7.3. Specific Heat -- 7.4. The Role of Phonons -- References -- 8 Magnetic Properties -- 8.1. Introduction -- 8.2. Cu-O Magnetism -- 8.3. Rare Earth Magnetism -- References -- 9 Electron Pairing: How and Why? -- 9.1. Introduction -- 9.2. Cooper Pairs -- 9.3. Bose Condensation -- 9.4. BCS Theory for T C --  
505 0 |a 1 Survey of Superconductivity -- 1.1. Introduction -- 1.2. dc Electrical Resistance -- 1.3. Perfect Diamagnetism -- 1.4. Energy Gap -- 1.5. Electron-Phonon Interaction and Cooper Pairing -- 1.6. BCS Theory -- 1.7. Type-II Superconductors -- 1.8. New Topics in Superconductivity -- References -- 2 Theory of Type-II Superconductivity -- 2.1. Introduction -- 2.2. Ginzburg-Landau Theory -- 2.3. Microscopic Theory -- 2.4. Beyond Dirty Limit Theory -- References -- 3 The Josephson Effect -- 3.1. Phenomenology -- 3.2. Microscopic Theory -- 3.3. Quantum Effects -- 3.4. Summary -- References -- 4 Crystallography -- 4.1. Introduction -- 4.2. The Rietveld Method -- 4.3. The Structure of Perovskite -- 4.4. The System BaPb 1?x BixO 3 -- 4.5. The System La 2?x MxCuO 4?y (M = Ba, Sr) -- 4.6. The System Ba 2 MCu3O ? (M = Y, Gd, Eu, etc.) -- 4.7. The System Ba 2?x La1?x Cu3 O? -- 4.8. The System BiCaSr2 Cu2 O? -- 4.9. Materials With Crystallographic Shear -- References --  
505 0 |a 9.5. The Interaction in BCS Theory -- 9.6. The BCS Ground State -- 9.7. Off-Diagonal Long Range Order (ODLRO) -- 9.8. Eliashberg Theory of Electron-Phonon Superconductors -- 9.9. Excitons and Plasmons -- 9.10. Spin Fluctuations -- 9.11. Weak versus Strong Coupling -- 9.12. Bipolarons -- 9.13. The Hubbard Model in Strong Coupling -- 9.14. RVB Theory -- 9.15. Oxygen Holes and Copper Spins -- 9.16. Postscript -- References -- 10 Superconducting Devices -- 10.1. Introduction -- 10.2 Cryotron -- 10.3 Josephson Device -- 10.4 A Voltage Standard -- 10.5 Single-Junction SQUID -- 10.6 SQUID Magnetometer -- 10.7 Two-Junction SQUIDs -- 10.8 Binary Counter -- 10.9 Sampling Oscilloscope -- 10.10 Transmission Lines -- 10.11. Conclusion -- References -- Chemical Formula Index 
653 |a Superconductivity 
653 |a Superconductors 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Maryland Subseries: Based on Lectures at the University of Maryland, College Park 
028 5 0 |a 10.1007/978-1-4612-3222-3 
856 4 0 |u https://doi.org/10.1007/978-1-4612-3222-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.112973 
520 |a One of the most exciting developments in modern physics has been the discovery of the new class of oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. Indeed, the idea of a room-temperature superconductor, which just a short time ago was considered science fiction, appears to be a distinctly possible outcome of materials research. To address the need to train students and scientists for research in this exciting field, Jeffrey W. Lynn and colleagues at the University of Maryland, College Park, as well as other superconductivity experts from around the U.S., taught a graduate-level course in the fall of 1987, from which the chapters in this book were drawn. Subjects included are: Survey of superconductivity (J. Lynn).- The theory of type-II superconductivity (D. Belitz).- The Josephson effect (P. Ferrell).- Crystallography (A. Santoro).- Electronic structure (C.P.Wang).- Magnetic properties and interactions (J. Lynn).- Synthesis and diamagnetic properties (R. Shelton).- Electron pairing (P. Allen).- Superconducting devices (F. Bedard).- Superconducting properties (J. Crow, N.-P. Ong)