Adaptive Control of Systems with Actuator Failures

When an actuator fails, chaos or calamity can often ensue. It is because the actuator is the final step in the control chain, when the control system’s instructions are made physically real that failure can be so important and hard to compensate for. When the nature or location of the failure is unk...

Full description

Bibliographic Details
Main Authors: Tao, Gang, Chen, Shuhao (Author), Tang, Xidong (Author), Joshi, Suresh M. (Author)
Format: eBook
Language:English
Published: London Springer London 2004, 2004
Edition:1st ed. 2004
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03607nmm a2200421 u 4500
001 EB000617863
003 EBX01000000000000000470945
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781447137580 
100 1 |a Tao, Gang 
245 0 0 |a Adaptive Control of Systems with Actuator Failures  |h Elektronische Ressource  |c by Gang Tao, Shuhao Chen, Xidong Tang, Suresh M. Joshi 
250 |a 1st ed. 2004 
260 |a London  |b Springer London  |c 2004, 2004 
300 |a XVI, 299 p  |b online resource 
505 0 |a 1. Introduction -- 2. State Feedback Designs for State Tracking -- 3. State Feedback Designs for Output Tracking -- 4. Output Feedback Designs for Output Tracking -- 5. Designs for Multivariable Systems -- 6. Pole Placement Designs -- 7. Designs for Linearized Aircraft Models -- 8. Robust Designs for Discrete-Time Systems -- 9. Failure Compensation for Nonlinear Systems -- 10. State Feedback Designs for Nonlinear Systems -- 11. Nonlinear Output Feedback Designs -- 12. Conclusions and Research Topics -- A.1 Model Reference Adaptive Control -- A.1.1 MRAC: State Feedback for State Tracking -- A.1.2 MRAC: State Feedback for Output Tracking -- A.1.3 MRAC: Output Feedback for Output Tracking -- A.2 Multivariable MRAC -- A.3 Adaptive Pole Placement Control -- References 
653 |a Electronics and Microelectronics, Instrumentation 
653 |a Control, Robotics, Automation 
653 |a Automotive Engineering 
653 |a Control and Systems Theory 
653 |a Automotive engineering 
653 |a Control engineering 
653 |a Chemistry, Technical 
653 |a Robotics 
653 |a Electronics 
653 |a Automation 
653 |a Industrial Chemistry 
700 1 |a Chen, Shuhao  |e [author] 
700 1 |a Tang, Xidong  |e [author] 
700 1 |a Joshi, Suresh M.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
028 5 0 |a 10.1007/978-1-4471-3758-0 
856 4 0 |u https://doi.org/10.1007/978-1-4471-3758-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 629.8312 
082 0 |a 003 
520 |a When an actuator fails, chaos or calamity can often ensue. It is because the actuator is the final step in the control chain, when the control system’s instructions are made physically real that failure can be so important and hard to compensate for. When the nature or location of the failure is unknown, the offsetting of consequent system uncertainties becomes even more awkward. Adaptive Control of Systems with Actuator Failures centers on counteracting situations in which unknown control inputs become indeterminately unresponsive over an uncertain period of time by adapting the responses of remaining functional actuators. Both "lock-in-place" and varying-value failures are dealt with. The results presented demonstrate: • the existence of nominal plant-model matching controller structures with associated matching conditions for all possible failure patterns; • the choice of a desirable adaptive controller structure; • derivation of novel error models in the presence of failures; • the design of adaptive laws allowing controllers to respond to combinations of uncertainties stemming from activator failures and system parameters. Adaptive Control of Systems with Actuator Failures will be of significance to control engineers generally and especially to both academics and industrial practitioners working on safety-critical systems or those in which full-blown fault identification and diagnosis is either too time consuming or too expensive