A Concrete Introduction to Higher Algebra

This book is written as an introduction to higher algebra for students with a background of a year of calculus. The first edition of this book emerged from a set of notes written in the 1970sfor a sophomore-junior level course at the University at Albany entitled "Classical Algebra." The o...

Full description

Bibliographic Details
Main Author: Childs, Lindsay N.
Format: eBook
Language:English
Published: New York, NY Springer New York 1995, 1995
Edition:2nd ed. 1995
Series:Undergraduate Texts in Mathematics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • E. Error-Correcting Codes, I
  • F. Hill Codes
  • 14 Polynomials
  • 15 Unique Factorization
  • A. Division Theorem
  • B. Primitive Roots
  • C. Greatest Common Divisors
  • D. Factorization into Irreducible Polynomials
  • 16 The Fundamental Theorem of Algebra
  • A. Rational Functions
  • B. Partial Fractions
  • C Irreducible Polynomials over ?
  • D. The Complex Numbers
  • E. Root Formulas
  • F. The Fundamental Theorem
  • G. Integrating
  • 17 Derivatives
  • A. The Derivative of a Polynomial
  • B. Sturm’s Algorithm
  • 18 Factoring in ?[x], I
  • A. Gauss’s Lemma
  • B. Finding Roots
  • C. Testing for Irreducibility
  • 19 The Binomial Theorem in Characteristic p
  • A. The Binomial Theorem
  • B. Fermat’s Theorem Revisited
  • C. Multiple Roots
  • 20 Congruences and the Chinese Remainder Theorem
  • A. Congruences Modulo a Polynomial
  • B. The Chinese Remainder Theorem
  • 21 Applications of the Chinese Remainder Theorem
  • A. The Method of Lagrange Interpolation
  • D. Sieves
  • E. Factoring by the Pollard Rho Method
  • F. Knapsack Cryptosystems
  • 8 Rings and Fields
  • A. Axioms
  • B. ?/m?
  • C. Homomorphisms
  • 9 Fermat’s and Euler’s Theorems
  • A. Orders of Elements
  • B. Fermat’s Theorem
  • C. Euler’s Theorem
  • D. Finding High Powers Modulo m
  • E. Groups of Units and Euler’s Theorem
  • F. The Exponent of an Abelian Group
  • 10 Applications of Fermat’s and Euler’s Theorems
  • A. Fractions in Base a
  • B. RSA Codes
  • C. 2-Pseudoprimes
  • D. Trial a-Pseudoprime Testing
  • E. The Pollard p — 1 Algorithm
  • 11 On Groups
  • A. Subgroups
  • B. Lagrange’s Theorem
  • C. A Probabilistic Primality Test
  • D. Homomorphisms
  • E. Some Nonabelian Groups
  • 12 The Chinese Remainder Theorem
  • A. The Theorem
  • B. Products of Rings and Euler’s ?-Function
  • C. Square Roots of 1 Modulo m
  • 13 Matricesand Codes
  • A. Matrix Multiplication
  • B. Linear Equations
  • C. Determinants and Inverses
  • D. Mn(R)
  • 1 Numbers
  • 2 Induction
  • A. Induction
  • B. Another Form of Induction
  • C. Well-Ordering
  • D. Division Theorem
  • E. Bases
  • F. Operations in Base a
  • 3 Euclid’s Algorithm
  • A. Greatest Common Divisors
  • B. Euclid’s Algorithm
  • C. Bezout’s Identity
  • D. The Efficiency of Euclid’s Algorithm
  • E. Euclid’s Algorithm and Incommensurability
  • 4 Unique Factorization
  • A. The Fundamental Theorem of Arithmetic
  • B. Exponential Notation
  • C. Primes
  • D. Primes in an Interval
  • 5 Congruences
  • A. Congruence Modulo m
  • B. Basic Properties
  • C. Divisibility Tricks
  • D. More Properties of Congruence
  • E. Linear Congruences and Bezout’s Identity
  • 6 Congruence Classes
  • A. Congruence Classes (mod m): Examples
  • B. Congruence Classes and ?/m?
  • C. Arithmetic Modulo m
  • D. Complete Sets of Representatives
  • E. Units
  • 7 Applications of Congruences
  • A. Round Robin Tournaments
  • B. Pseudorandom Numbers
  • C. Factoring Large Numbers by Trial Division
  • B. Fast Polynomial Multiplication
  • 22 Factoring in Fp[x] and in ?[x]
  • A. Berlekamp’s Algorithm
  • B. Factoring in ?[x] by Factoring mod M
  • C. Bounding the Coefficients of Factors of a Polynomial
  • D. Factoring Modulo High Powers of Primes
  • 23 Primitive Roots
  • A. Primitive Roots Modulo m
  • B. Polynomials Which Factor Modulo Every Prime
  • 24 Cyclic Groups and Primitive Roots
  • A. Cyclic Groups
  • B. Primitive Roots Modulo pe
  • 25 Pseudoprimes
  • A. Lots of Carmichael Numbers
  • B. Strong a-Pseudoprimes
  • C. Rabin’s Theorem
  • 26 Roots of Unity in ?/m?
  • A. For Which a Is m an a-Pseudoprime?
  • B. Square Roots of ?1 in ?/p?
  • C. Roots of ?1 in ?/m?
  • D. False Witnesses
  • E. Proof of Rabin’s Theorem
  • F. RSA Codes andCarmichael Numbers
  • 27 Quadratic Residues
  • A. Reduction to the Odd Prime Case
  • B. The Legendre Symbol
  • C. Proof of Quadratic Reciprocity
  • D. Applications of Quadratic Reciprocity
  • 28 Congruence Classes Modulo a Polynomial
  • A. The Ring F[x]/m(x)
  • B. Representing Congruence Classes mod m(x)
  • C. Orders of Elements
  • D. Inventing Roots of Polynomials
  • E. Finding Polynomials with Given Roots
  • 29 Some Applications of Finite Fields
  • A. Latin Squares
  • B. Error Correcting Codes
  • C. Reed-Solomon Codes
  • 30 Classifying Finite Fields
  • A. More Homomorphisms
  • B. On Berlekamp’s Algorithm
  • C. Finite Fields Are Simple
  • D. Factoring xpn — x in Fp[x]
  • E. Counting Irreducible Polynomials
  • F. Finite Fields
  • G. Most Polynomials in Z[x] Are Irreducible
  • Hints to Selected Exercises
  • References