Low-Power Deep Sub-Micron CMOS Logic Sub-threshold Current Reduction

1. 1 Power-dissipation trends in CMOS circuits Shrinking device geometry, growing chip area and increased data-processing speed performance are technological trends in the integrated circuit industry to enlarge chip functionality. Already in 1965 Gordon Moore predicted that the total number of devic...

Full description

Bibliographic Details
Main Authors: van der Meer, P., van Staveren, A. (Author), van Roermund, Arthur H.M. (Author)
Format: eBook
Language:English
Published: New York, NY Springer US 2004, 2004
Edition:1st ed. 2004
Series:The Springer International Series in Engineering and Computer Science
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04145nmm a2200373 u 4500
001 EB000615885
003 EBX01000000000000000468967
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781402028496 
100 1 |a van der Meer, P. 
245 0 0 |a Low-Power Deep Sub-Micron CMOS Logic  |h Elektronische Ressource  |b Sub-threshold Current Reduction  |c by P. van der Meer, A. van Staveren, Arthur H.M. van Roermund 
250 |a 1st ed. 2004 
260 |a New York, NY  |b Springer US  |c 2004, 2004 
300 |a XIV, 154 p. 128 illus  |b online resource 
505 0 |a 1. Introduction -- 1.1 Power-dissipation trends in CMOS circuits -- 1.2 Overview of present power-reduction solutions -- 1.3 Aim and scope of this book -- 1.4 Organization of the book -- 2. Power Versus Energy -- 2.1 Power considerations -- 2.2 Energy considerations -- 2.3 Conclusions -- 3. Power Dissipation in Digital CMOS Circuits -- 3.1 Thermodynamics of computation -- 3.2 Functional power dissipation -- 3.3 Parasitical power dissipation -- 3.4 Trends in power dissipation -- 3.5 Conclusions -- 4. Reduction of Functional Power Dissipation -- 4.1 Node transition-cycle activity factor -- 4.2 Clock frequency -- 4.3 Transition-cycle energy -- 4.4 Conclusions -- 5. Reduction of Parasitical Power Dissipation -- 5.1 Leakage power dissipation -- 5.2 Short-circuit power dissipation -- 5.3 Need for weak-inversion current reduction -- 5.4 Conclusions -- 6. Weak-Inversion Current Reduction -- 6.1 Classification -- 6.2 Conclusions -- 7. Effectiveness of Weak-Inversion Current Reduction -- 7.1 General effectiveness -- 7.2 Technique-specific effectiveness -- 7.3 Conclusions -- 8. Triple-S Circuit Designs -- 8.1 Process flow -- 8.2 Experimental circuits -- 8.3 Leakage, speed, area and functional power -- 8.4 Practical applications and limitations -- 8.5 Conclusions -- 9. Conclusions -- 10. Summary -- References 
653 |a Electronics and Microelectronics, Instrumentation 
653 |a Computer science 
653 |a Engineering design 
653 |a Electrical and Electronic Engineering 
653 |a Electrical engineering 
653 |a Electronics 
653 |a Engineering Design 
653 |a Theory of Computation 
700 1 |a van Staveren, A.  |e [author] 
700 1 |a van Roermund, Arthur H.M.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a The Springer International Series in Engineering and Computer Science 
028 5 0 |a 10.1007/978-1-4020-2849-6 
856 4 0 |u https://doi.org/10.1007/978-1-4020-2849-6?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.3 
520 |a 1. 1 Power-dissipation trends in CMOS circuits Shrinking device geometry, growing chip area and increased data-processing speed performance are technological trends in the integrated circuit industry to enlarge chip functionality. Already in 1965 Gordon Moore predicted that the total number of devices on a chip would double every year until the 1970s and every 24 months in the 1980s. This prediction is widely known as "Moore's Law" and eventually culminated in the Semiconductor Industry Association (SIA) technology road map [1]. The SIA road map has been a guide for the in­ dustry leading them to continued wafer and die size growth, increased transistor density and operating frequencies, and defect density reduction. To mention a few numbers; the die size increased 7% per year, the smallest feature sizes decreased 30% and the operating frequencies doubled every two years. As a consequence of these trends both the number of transistors and the power dissi­ pation per unit area increase.In the near future the maximum power dissipation per unit area will be reached. Down-scaling of the supply voltage is not only the most effective way to reduce power dissipation in general it also is a necessary precondition to ensure device reliability by reducing electrical fields and device temperature, to prevent device degradation. A draw-back of this solution is an increased signal propa­ gation delay, which results in a lower data-processing speed performance