Nanoengineered Nanofibrous Materials

The combination of conductive polymer technology with the ability to produce nanofibres will facilitate major new developments in biotechnology and information technology, benefiting such areas as scaffolds for tissue engineering and drug delivery systems; wires, capacitors, transistors and diodes;...

Full description

Bibliographic Details
Other Authors: Guceri, Selcuk (Editor), Gogotsi, Yury G. (Editor), Kuznetsov, Vladimir (Editor)
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 2004, 2004
Edition:1st ed. 2004
Series:NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 02409nmm a2200349 u 4500
001 EB000615799
003 EBX01000000000000000468881
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9781402025501 
100 1 |a Guceri, Selcuk  |e [editor] 
245 0 0 |a Nanoengineered Nanofibrous Materials  |h Elektronische Ressource  |c edited by Selcuk Guceri, Yury G. Gogotsi, Vladimir Kuznetsov 
250 |a 1st ed. 2004 
260 |a Dordrecht  |b Springer Netherlands  |c 2004, 2004 
300 |a XII, 543 p  |b online resource 
505 0 |a Formation of Nanofibers and Nanotubes Production -- Physics and Chemistry of Nanofibers -- Simulation and Modeling -- Applications -- Nanomaterials, Nanoparticles, and Nanostructures 
653 |a Classical Mechanics 
653 |a Automotive Engineering 
653 |a Automotive engineering 
653 |a Materials / Analysis 
653 |a Mechanics 
653 |a Characterization and Analytical Technique 
700 1 |a Gogotsi, Yury G.  |e [editor] 
700 1 |a Kuznetsov, Vladimir  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a NATO Science Series II: Mathematics, Physics and Chemistry, Mathematics, Physics and Chemistry 
028 5 0 |a 10.1007/978-1-4020-2550-1 
856 4 0 |u https://doi.org/10.1007/978-1-4020-2550-1?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 629.2 
520 |a The combination of conductive polymer technology with the ability to produce nanofibres will facilitate major new developments in biotechnology and information technology, benefiting such areas as scaffolds for tissue engineering and drug delivery systems; wires, capacitors, transistors and diodes; sensor technology; biohazard protection; and energy transport, conversion and storage. The work on nanofibrous materials presented here is designed, first of all, to instruct scientists in the most advanced methods for the formation of nanofibres and nanotubes. The second section covers the physics and chemistry of nanofibres, while the third deals with computer simulation and modelling. The applications described in section 4 include biomedical applications, nanotube-based devices, electronic applications of nanotubes and nanofibres, nanofluidics, and composites. Finally, the fifth section discusses recent developments in nanomaterials, nanoparticles and nanostructures