All-Optical Noninvasive Delayed Feedback Control of Semiconductor Lasers

The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A mul...

Full description

Bibliographic Details
Main Author: Schikora, Sylvia
Format: eBook
Language:English
Published: Wiesbaden Springer Fachmedien Wiesbaden 2013, 2013
Edition:1st ed. 2013
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.   The work has been awarded the Carl-Ramsauer-Prize 2012.   Contents ·         All-Optical Control Setup ·         Stable States with Resonant Fabry-Perot Feedback ·         Control of an Unstable Stationary State and of Unstable Selfpulsations ·         Controlling Chaos ·         Control of a Torsionfree Orbit   Target Groups   ·         Researchers and students of nonlinear dynamics or semiconductor laser technology, interested in the application of control synchronization in the GHz range ·         Practitioners in the field of optical telecommunication     The author Dr. Sylvia Schikora completed her doctoral thesis on ultrafast noninvasive control of semiconductor lasers at the Department of Physics, Humboldt University of Berlin. She currently works at Humboldt University as a postdoctoral researcher with a focus on optical metrology
Physical Description:XIX, 118 p. 59 illus online resource
ISBN:9783658015404