Random Perturbation of PDEs and Fluid Dynamic Models École d’Été de Probabilités de Saint-Flour XL – 2010

This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented i...

Full description

Main Author: Flandoli, Franco
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2011, 2011
Edition:1st ed. 2011
Series:École d'Été de Probabilités de Saint-Flour
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 01899nmm a2200289 u 4500
001 EB000386086
003 EBX01000000000000000239138
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783642182310 
100 1 |a Flandoli, Franco 
245 0 0 |a Random Perturbation of PDEs and Fluid Dynamic Models  |h Elektronische Ressource  |b École d’Été de Probabilités de Saint-Flour XL – 2010  |c by Franco Flandoli 
250 |a 1st ed. 2011 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2011, 2011 
300 |a X, 182 p. 10 illus  |b online resource 
505 0 |a 1. Introduction to Uniqueness and Blow-up -- 2. Regularization by Additive Noise -- 3. Dyadic Models -- 4. Transport Equation -- 5. Other Models. Uniqueness and Singularities 
653 |a Distribution (Probability theory 
653 |a Probability Theory and Stochastic Processes 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a École d'Été de Probabilités de Saint-Flour 
856 |u https://doi.org/10.1007/978-3-642-18231-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519.2 
520 |a This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices