Plastics from Bacteria Natural Functions and Applications

Due to the possibility that petroleum supplies will be exhausted in the next decades to come, more and more attention has been paid to the production of bacterial pl- tics including polyhydroxyalkanoates (PHA), polylactic acid (PLA), poly(butylene succinate) (PBS), biopolyethylene (PE), poly(trimeth...

Full description

Bibliographic Details
Other Authors: Chen, George Guo-Qiang (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2010, 2010
Edition:1st ed. 2010
Series:Microbiology Monographs
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Table of Contents:
  • of Bacterial Plastics PHA, PLA, PBS, PE, PTT, and PPP
  • Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates
  • Natural Functions of Bacterial Polyhydroxyalkanoates
  • Towards Systems Metabolic Engineering of PHA Producers
  • Microbial PHA Production from Waste Raw Materials
  • Industrial Production of PHA
  • Unusual PHA Biosynthesis
  • Metabolic Engineering of Plants for the Synthesis of Polyhydroxyalkanaotes
  • Biosynthesis of Medium-Chain-Length Poly[(R)-3-hydroxyalkanoates]
  • Nodax™ Class PHA Copolymers: Their Properties and Applications
  • Manufacturing of PHA as Fibers
  • Degradation of Natural and Artificial Poly[(R)-3-hydroxyalkanoate]s: From Biodegradation to Hydrolysis
  • Microbial Lactic Acid, Its Polymer Poly(lactic acid), and Their Industrial Applications
  • Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications
  • Microbial Ethanol, Its Polymer Polyethylene, and Applications
  • Microbial 1,3-Propanediol, Its Copolymerization with Terephthalate, and Applications
  • Microbial cis-3,5-Cyclohexadiene-1,2-diol, Its Polymer Poly(p-phenylene), and Applications