Knowledge Discovery Enhanced with Semantic and Social Information

This book is a showcase of recent advances in knowledge discovery enhanced with semantic and social information. It includes eight contributed chapters that grew out of two joint workshops at ECML/PKDD 2007. There is general agreement that the effectiveness of Machine Learning and Knowledge Discover...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Berendt, Bettina (Editor), Mladenic, Dunja (Editor), de Gemmis, Marco (Editor), Semeraro, Giovanni (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2009, 2009
Edition:1st ed. 2009
Series:Studies in Computational Intelligence
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Summary:This book is a showcase of recent advances in knowledge discovery enhanced with semantic and social information. It includes eight contributed chapters that grew out of two joint workshops at ECML/PKDD 2007. There is general agreement that the effectiveness of Machine Learning and Knowledge Discovery output strongly depends not only on the quality of source data and the sophistication of learning algorithms, but also on additional input provided by domain experts. There is less agreement on whether, when and how such input can and should be formalized as explicit prior knowledge. The six chapters in the first part of the book aim to investigate this aspect by addressing four different topics: inductive logic programming; the role of human users; investigations of fully automated methods for integrating background knowledge; the use of background knowledge for Web mining. The two chapters in the second part are motivated by the Web 2.0 (r)evolution and the increasingly strong role of user-generated content. The contributions emphasize the vision of the Web as a social medium for content and knowledge sharing
Physical Description:X, 143 p online resource
ISBN:9783642018916