Large Random Matrices: Lectures on Macroscopic Asymptotics École d'Été de Probabilités de Saint-Flour XXXVI – 2006

Random matrix theory has developed in the last few years, in connection with various fields of mathematics and physics. These notes emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions. Such questions are also closely related with the...

Full description

Main Author: Guionnet, Alice
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2009, 2009
Edition:1st ed. 2009
Series:École d'Été de Probabilités de Saint-Flour
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02975nmm a2200397 u 4500
001 EB000378093
003 EBX01000000000000000231145
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540698975 
100 1 |a Guionnet, Alice 
245 0 0 |a Large Random Matrices: Lectures on Macroscopic Asymptotics  |h Elektronische Ressource  |b École d'Été de Probabilités de Saint-Flour XXXVI – 2006  |c by Alice Guionnet 
250 |a 1st ed. 2009 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2009, 2009 
300 |a XII, 294 p. 13 illus  |b online resource 
505 0 |a Wigner matrices and moments estimates -- Wigner#x2019;s theorem -- Wigner's matrices; more moments estimates -- Words in several independent Wigner matrices -- Wigner matrices and concentration inequalities -- Concentration inequalities and logarithmic Sobolev inequalities -- Generalizations -- Concentration inequalities for random matrices -- Matrix models -- Maps and Gaussian calculus -- First-order expansion -- Second-order expansion for the free energy -- Eigenvalues of Gaussian Wigner matrices and large deviations -- Large deviations for the law of the spectral measure of Gaussian Wigner's matrices -- Large Deviations of the Maximum Eigenvalue -- Stochastic calculus -- Stochastic analysis for random matrices -- Large deviation principle for the law of the spectral measure of shifted Wigner matrices -- Asymptotics of Harish-Chandra-Itzykson-Zuber integrals and of Schur polynomials -- Asymptotics of some matrix integrals -- Free probability -- Free probability setting -- Freeness 
653 |a Discrete Mathematics 
653 |a Functional analysis 
653 |a Distribution (Probability theory 
653 |a Probability Theory and Stochastic Processes 
653 |a Linear and Multilinear Algebras, Matrix Theory 
653 |a Functional Analysis 
653 |a Algebra 
653 |a Algebra 
653 |a Matrix theory 
653 |a Combinatorics 
653 |a Combinatorics 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a École d'Été de Probabilités de Saint-Flour 
856 |u https://doi.org/10.1007/978-3-540-69897-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 511.1 
520 |a Random matrix theory has developed in the last few years, in connection with various fields of mathematics and physics. These notes emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions. Such questions are also closely related with the asymptotic distribution of matrices, which is naturally defined in the context of free probability and operator algebra. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Maury Bramson and Steffen Lauritzen